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CHAPTER I

INTRODUCTION

Enclosed waveguiding structures have long been of great
importance in the transmission of high-frequency electro-
magnetic energy. The electromagnetic properties of uniform,
axial waveguides are generally well understood, but practical
applications introduce discontinuities and transition regions
into waveguides which often significantly affect their re-
sponse. In the particular case of discontinuities which are
limited to the plane transverse to the direction of propa-
gation, an impedance mismatch and a region of reactive energy
storage are normally introduced into the waveguide. Such
effects are usually undesirable, but properly designed dis-
continuities can provide very desirable impedance-matching
devices and resonating cavities.

Analyses of planar waveguide discontinuities quickly fol-
lowed the beginning of efforts to develop useful radio-fre-
quency and microwave devices utilizing waveguiding structures.
Low-~frequency techniques such as field mapping yielded useful

results for transverse electromagnetic (TEM) mode propagation

in coaxial and parallel-plate waveguides. The effective




treatment of discontinuities when higher-order modes exist

in coaxial lines and for waveguides supporting transverse
electric (TE) and transverse magnetic (TM) modes was much more
difficult. A discontinuity requires the local contributions
of an infinite set of modes to satisfy the electromagnetic
boundary conditions. Mathematical complexity prevented early
analytical treatments from considering more than one or two

of the higher-order modes. The most accurate of the early

treatments was based upon variatiocnal solutions to susceptance

expressions which had been developed from integral equations.
Very useful expressions for the susceptances of a large variety
of waveguide discontinuities were derived by Julian Schwinger
and a capable group of associates in the 1940s. Many of the
results of this work were compiled by Nathan Marcuvitz into

the well-known Wavequide Handbook, Ref.[l]. This work is of

such quality that even today it remains the treatment of
choice for most applications. Very good descriptions of the
techniques employed to derive these expressions have been
presented in books by Schwinger and Saxon, Ref.[2], Collin,
Ref.[3], and Lewin, Refs.{[4], [S], and [6]. The earliest
published work on discontinuities in coaxial waveguides was

by J. R. Whinnery and H. W. Camieson, Ref.[7], and Whinnery,

Jamieson, and Robbins, Ref.(8]. These investigators used an

approach suggested by W. C. Hahn in 1941 which involved com-~




putation of the terms of a Fourier expansion of the field in
the discontinuity to calculate the capacitance of coaxial dis-
continuities. Computation of the terms of the series was
sufficiently difficult that Whinnery, et al., used only the
first four higher-order modes to obtain results that were

later shown to be accurate to within five per cent.

The variational technique employed by the above authors

is included in the collection of mathematical solution pro-
cedures which R. F. Harrington has identified in his Field

Computation by Moment Methods, Ref.[9]. This variational

approach is identical to a one-term Galerkin's solution,

Ref.[9], where the assumed value of the unknown field dis-

tribution in the discontinuity serves as both the basis and

testing function. As indicated earlier, this approach is

very effective for dominant mode operation of waveguides when

frequencies are low enough to prevent propagation of higher-

order modes. Under this frequency constraint, susceptance re-

sults obtained from both analyses and experimental measure-

ments during the course of this investigation have shown re-

markable agreement with values calculated from expressions in 5

the Wavequide Handbook. These latter calculations benefit

from the characteristic of such variational solutions in that
a first-order change in the assumed field distribution in the

discontinuity produces only a second-order variation in the

calculated susceptance. The field in the vicinity of the dis-
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continuity can be calculated from the same assumed field dis-
tribution, but the field expressions are not variational and
thus, do not share the property whereby a first-order error in
the assumed field distribution produces a second-order error
in the calculated result.

The treatments of waveguide discontinuity problems which
employed variational technigques required a liberal amount of
ingenuity because such problems yielded solutions very
grudgingly. The increasing capability of the digital computer
opened new avenues of approach and investigators began to de-
velop techniques which took advantage of this tool. P. I.
Somlo used the computer to calculate more terms in the Hahn
series.approach used by Whinnery, et.al., Refs.[10] and [11].
D. Woods, Ref.[12], used interpolation on Somlo's results to
obtain a further improvement in accuracy and A. Jurkus pro-
vided improvements to Somlo's code, Ref.[13]. E. W. Risley,
Refs.[14] and [15], adapted the Rayleigh~Ritz procedure used
by Schwinger, et al., to solution by a computer and obtained
both upper- and lower-bound solutions for the capacitance of
the coaxial-to-circular waveguide junction.

A number of more recent investigations has employed
least~sguares techniques to minimize the error in satisfying
boundary-conditions at the discontinuities. The error results

from the fact that only a finite number of higher-order modes

is used in the field expansions at the discontinuities.




Investigations using such methods have been reported by J. B.

Davies, Ref.[16], Davies and M. Razaz, Ref.[l7], H. Oraizi
and J. Perini, Ref. (18], R. Jansen, Ref.[l19], and H. J. A.
LaRiviere and Davies, Ref.[20]. The results reported in Refs.
[L6] - [20] are largely for general waveguide discontinuities
with occasional specialization of the technique to coaxial
waveguides as in Ref.[17].

All of the investigations mentioned thus far were direc-
ted toward the computation of discontinuity capacitance and
some héve obtained very good levels of accuracy. Razaz and
Davies claim an error of *0.1 femtofarads in their calcula-
tions for the capacitance of a coaxial-to-circular waveguide
junction, Ref.[21]. None of these approaches is suitable
for treating situations where higher-order modes may propa-
gate. Alvin Wexler, Ref.[22], has developed a modal analysis
technique for treating waveguide discontinuities which in-
volves selecting the amplitudes of normal modes so as to
satisfy boundary conditions at the discontinuity. The method
is elegantly developed and allows the treatment of as many
modes as desired. It has the computational disadvantage of
requiring the solution of a set of N+l linear equations to
treat N modes. The method can also treat coupled discontinu-
ities, however, each discontinuity must be treated individually
and the procedure must begin with the discontinuity most

distant from the excitation.
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All the solution techniques mentioned thus far begin
with the same expressions for the field in the waveguide. It
is the approach to approximating or obtaining solutions for
the transverse field in the apertures of the discontinuities
that provides the differences among the methods. The primary
objective of this investigation is the development and vali-
dation of a frequency-independent capability of calculating
the electromagnetic properties of coaxial waveguide disconti-
nuities which is both computationally efficient and accurate.

Such a method necessarily includes the treatment of higher-

order modes, but it is done in such a way that it allows for
general excitation of the waveguides. The method presented
possesses a significant advantage over earlier approaches in
that a series-convergence technique is employed which allows
the recovery of essentially all the higher-order mode con-
tributions at a given discontinuity even though a finite
number of series terms is computed. The accuracy of the
method can be controlled (within computational errors) by
the number of basis expansion pulses and higher-order mode
terms considered in the solution. A very useful aspect of
this approach is the capability of combining two or more
discontinuities into simple or complex, one- or two-port
cavities as illustrated in Figure 1.

The formation and analytical treatment of simple and

partitioned cavities are considered extensively in the body
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of this report. Also presented are the results of a sub-

stantial experimental program designed to provide validation

for the analysis. Two sets of coaxial cavities with differing
dimensions were constructed and the internal field was meas-
ured for one- and two-port cavities of simple and parti-
tioned configurations. The input admittance of the two-port
cavity was measured. Extensive comparisons of measured

data with analytical results are presented which, in con-
junction with a discussion of possible experimental error,
lead to quantitative evaluations of the accuracy and useful-
ness of the analytical approach.

Analytic formulations for the field or electromagnetic
potentials within a cavity frequently include expressions
that contain three infinite series. For coaxial cavities
considered in this effort, the original excitation is always

assumed to consist of TEM or TM modes only. This constraint

On
eliminates any variation in the azimuthal coordinate and
simplifies the appropriate expressions to two infinite series.
It is mathematically (and computationally) expedient to treat
these cavities from a waveguide, i.e., traveling wave, point
of view and to consider the front and rear boundaries of the
cavities as planar wavequide discontinuities. The axial and

radial eigenvalues in this approach are related in such a

manner that the formulation requires only one infinite series

for a complete set of eigenfunctions. The derivation of the




magnetic vector potential and the resulting field expressions
is presented in Chapter II.

If the waveguide approach is used, it is very effective
to think of the traveling waves as penetrating apertures in
the discontinuities. This concept allows utilization of
existing techniques for calculating aperture penetration, in
particular, treating the aperture field as the unknown
guantity of interest since it is common to the adjoining re-
gions. All formulations in this report treat the transverse
electric field in the aperture as the unknown quantity. It
is the objective, therefore, to obtain solutions for the
aperture field for each discontinuity or partition used to
form a cavity structure. When this approach is used, it is
imperative to recognize any singular behavior of the aperture
field and then to develop a numerical solution technique
accordingly. In the following chapters integral equations
are developed for progressively more complex configurations
of discontinuities and details are given for appropriate
numerical solution technigques. The results of the comple-

mentary experimental measurements program serve to corrob-

orate the analytical results.
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CHAPTER II

ROTATIONALLY SYMMETRIC JUNCTION OF

TWO DISSIMILAR COAXIAL WAVEGUIDES

A. Introduction

The effects on the propagating modes produced by a dis-
continuity in a coaxial waveguide are a function of the re-
sulting field distribution in the vicinity of the discontin-
uity. The local field distribution is a modification of the
propagating modes and, in general, an infinite number of
higher-order modes is required to satisfy boundary conditions
at such a discontinuity. For a discontinuity confined to a
two-dimensional plane, a knowledge of the field in this
"aperture plane" is sufficient for determining the field
everywhere. From the knowledge of the aperture field, the
resulting effects on any propagating modes can be determined
and, if desired, microwave circuit representations of the
discontinuity can be derived. In this chapter, an integral
equation is formulated for the aperture electric field of the
generalized geometry depicted in Figure 2. This integral
equation is then specialized to the simpler geometries of

Figures 3 and 4 and is subsequently applied to a one-port
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coaxial cavity.

B. Derivation of Expressions for Field Components

An integral equation suitable for numerical solution is
obtained by developing expressions for each of the field com-
ponents in the regions either side of the discontinuity and
then enforcing continuity of the transverse field components
across the aperture in the discontinuity. These expressions
are derived from the appropriate operations on a vector
potential of the magnetic and/or electric type. The geometry
under consideration is azimuthally symmetric and, with the
éssumption of similar symmetry of the excitation, all magnetic
field components are transverse to the axial coordinate and,
therefore, the magnetic vector potential suffices for the
complete description of the field. This potential is the

solution to the vector wave equation
(v + k%) & = 8, (1)

subject to the appropriate boundary conditions and where k is
the wave number of the medium. A coaxial geometry with
azimuthally-symmetric excitation has only axially-directed cur-
rents and, therefore, only the axial component of the magnetic
vector potential is necessary to derive the complete field.

The geometries treated in this investigation have many surfaces

that support p-directed currents; however, it is shown in

12
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Appendix A that, for azimuthally-symmetric excitation, the
field derived from the z-directed vector potential is still
complete. The vector potential equation is reduced to the

scalar equation
(72 + x%) A (p,0,2) = 0.

Since the axial component of vector potential is independent

of ¢, A, may be represented by
Az(o.z) = R(p)2(z).

The axial function Z(z) satisfies the harmonic equation

—s + k. =0 (2)

which has the solution

2(z) = A e JK;2% 4 3 eJk,2

where A and B are arbitrary constants. The radial function

R(p) is a solution of

2 N
2 d°R dRrR 2 2 -
pT =5+ 0 + k7 p” R = 0. (3)

ao dp P

(4)

13
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Equation (3) is a zero-order Bessel's equation with the

solution
R(p) = ¢C Jo(kpp) + D No(kpp)

where I is the zero-order Bessel function of the first kind,
No is the zero-order Neumann function and C and D are arbi-

trary constants. Enforcement of the boundary condition that
the tangential (or z) component of electric field be zero at

the surface of the inner conductor yields the function
R(p) = E [Ng(kja)Jg(k p) = Jg(kja)Ng(k p)]

where a is the radius of the inner conductor and E is an ar-
bitrary constant. The second boundary condition requires the
z component of the electric field to be zero at the surface

of the outer conductor and results in the expression
R(p) = ¢,(p) = Ny(y a)JTy(y 0) = Jy(y a)Ng(y 0) (5)
where the Y, are the infinite set of kp which satisfy
¢, (b) = Nyl(ya)Jg(y b)) = Jy(y a)Ny(y b) = 0, n=1,2,... (6)

where b is the radius of the outer conductor. The new rep-

resentation for kz is an where

a_ =k = y_. (7

14
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For the special case kp = 0, the solution to Eg.(3) is
R{p) = B' 1np + C'

where the constant C' can be discarded. 1In this case,

kz = k which yields the special case

TEM
2

ATEM (o 2) = b* 1np e7IKZ 4 p” 1np eIkZ (8)

TEM

where, as indicated, Az

is the vector potential for the
TEM mode. The complete expression for the vector potential

is given by

A (p,2) = b; lnp e JkZ | by lnp eJke

Z

+ (b; e-Jan

e~ 8

+ b; el%n%) 8 _(p) (9)

n=1l

The wave number oy for the higher-order modes may be
either real or imaginary depending on the relative magni-
tudes of k and Yno For the former condition, the mode would
propagate and, for the latter, it would be cutoff. Proper
root selection is required for each case to assure conser-

vation of energy. The following selections are made

Y ) 2 2
an = k© - Yn ’ k® > Yn (10a)
o, = -3 'yz - k2, yi > k2 (10b)

In Egs.{(l0a&b), k is assumed to be a real number.

15
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The electric field is calculated from the expression

E=-j % (x*2a_ + 9. (2n)] .
X

The radial component of the electric field is given by

£ o= ot e-jkz b @ esz
o k 70 P k 70 »p
S + =3 ' ae
+ 8 ] o (-bf e73%% + b~ &3%%) P .
k® n=1 dp

The axial component of the electric field is given by

2
LW 2 )
E, = -j & |x° + &—| A_ ,
z k2 822] b4
[ -]
e o O 2 _ 2, 1 F _=ja z - _jo_z
E, j -z nEl(k a) (b, e °°n” + b e’n%) & (p) . (12)

The magnetic field is calculated from

-
H =

=

VX(ZAZ)

where u is the permeability of the dielectric medium. The

azimuthal component of magnetic field is given by

16




H =-l'.b+£]ii-£b'ejkz
¢ Y P uw 0 o
0 N o
- % ] (b} e73%n% + b~ &3%n%) 9%, (°) (13)
n=1 dp

At this point, the constants used in defining the field
components are redefined to make the TEM terms agree with
physical concepts so that the sign conventions on the TEM

and the higher-order mode terms agree, e.g.,

by = - £ 87, (14a)

by = =8y, (14b)

b = - 5;— B, . (14c)
n

b = 52; B. . (144)

The field components are now given by

E, =85 e 352 + 8] &3%2 + | (8} e73%% + ] &3%%) ¥,
P p p n=1 dp
© 2 2 . .
- k¥ = a + —-Jaz _ .~ ja.z
E, =3 [ nl (B, e-"n B, e’'n") ¢,
n=1 a
n

and

> . - -] . .
Hy = B3 2 - By eIX2 4 % I (8" e73%* - pred®n?) Iy

ne ne n=l “n do




e

A N i, | .

where n is the characteristic impedance of the dielectric

n=/§_ . (15)

C. Field Expressions for Two Dissimilar Coaxial Regions

medium,

The analysis of the junction of two coaxial regions with
differing inner and/or outer radii and/or dielectric media
requires separate field expressions for each region. Such a
junction is shown in Figure 2 which also displays schematic
representations of the incident and reflected waves in each
region. In this figure and others in the report, the assump-
tion is made that the truncated sections of waveguide have
matched terminations (or equivalently, extend to * infinity).
Under such an assumption, all incident waves represent know
sources with no reflected components. The junction in Fig-
ure 2 is arbitrarily located at z = s in order to retain gen-
erality in the field expressions. For single discontinuities,
specifying 2 = 0 in the resulting equations will simplify the
mathematics somewhat.

For the region z < s, with media characteristics

k. = w vYu_e (l6a)
and

u-
n=.J= . (16b)

the field components are

18
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- -jk_z jk_z k ® . .
+ e - e’ "~ - 1 + _-jo_z - joa_z.d
H B - B + — ] =—(B. e %n® - B_ e'%n*)%"n
¢ 0 n_o 0 n_e Mo p=] % B n T
where (19)
¢ (p) = Ny(y a)Jg(vpp) = Jo(y a)Ny (v, 0) (20)
and
2 _,2 _ 2
a = k" Yo - (21)
The Y, are the roots of the transcendental equation
¢n(b) = NO(Yna)Jo(an) - Jo(Yna)No(an) =0, (22)

where a and b are the inner and outer radii of the coaxial
region for z < s.

For the region z > s, with the dielectric media char-

acteristics
k+ =W ¢u+€+ (23a) .
and
/ ¥+
n, = - {23b)
+ €, ’

the field components are




E :
| -jk, z - oJk.z g
Ey = Cp S0+ cp S+ ] (¢} e7Bn? + ¢ &3 %n |, (20)
} P n=1 35
B =g ] i (c¥ e”3Bn% - ¢ eIfn?)y 25
i 2z n=1 B8 P n n '’ (25)
n and
. -jk, 2z jk. .z k ® . .
+ + -
‘ H¢ = C, g - ; 0 en o4 Hi ) l—(c; e 3827 - C, elBn2)d¥,
, + +P + n=1 "n de
l where (26)
F Wn(p) = No(ch)Jo(an) - JO(AnC)NO(XnD) (27)
‘ and
2 _ .2 2
, By = ki = AL . (28)
k The An are the roots of the transcendental equation
Wn(d) = NO(ch)JO(And) - JO(AnC)NO(And) =0, (29)

where ¢ and & are the inner and outer radii of the coaxial
region for z > s. Note that the annular disk attached to

the inner conductor has no effect on the field definitions.
The disk merely imposes a boundary condition to be enforced

in the plane of the aperture.

D. Evaluation of Constants in the z < s Region

The unknown constants of Egs.(17)-(19) are evaluated in
terms of integrals over the unknown aperture electric field

by application of Fourier series techniques. The first step

20
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in evaluating B; and Ba is tc integrate both sides of Eqg.(17)
over the z = s plane (illustrated in Figure 2) with respect

to p which yields

b

: b
do , g~ oJk_s I dp
o 0 a P

b .
f E_ dp = BB e~Jk_s f
ap a

b . .

¥ j 7 (BY e 3% % + B e1%n%)%% 4o

n n —
a n=1 do

After evaluation of the integrals on the right-hand side of

the equation, one obtains

b . .
- _ + _-jk_s - _jk_s b
fan do = (BO e + B, e ) lnola

o +
nil(Bn ®

~-ja_s - ja_s b
n~ + Bn e’ n”) ?n(o)la .

+

0 from Eg.(22) and that @n(a) = 0 from

Note that @n(b)

the definition in Eq. (20); therefore

- JJk_s _
+ By e =

|H

- b _
B; e Jk_s ( Ep do . (30)
1n= ‘a

e

The presence of the perfectly conducting disk in the aper-

ture affects the value of E over the aperture.

_ 0 , pe(a,h)
E = {31)

e Eg, oe (h,b)

With the constraint of Eg.(31l), Eg.(30) becomes

21




. . b
Bt e jk_s + B eJk-s - ° dp . (32)
0 0 b p
In= ‘h
a
+ g Jk_2
The BO — term in Eq. (17) represents a TEM wave traveling

in the +2 direction. This wave is the only such positive
traveling TEM wave for z < s and, hence, is identified as the
known excitation. The subject term may be expressed as E

o+ o~Jk_z _ vt e-jk_z ;
0 N P
lna i

The quantity v is the voltage (complex in general) of the
excitation applied to the coaxial waveguide in the z < s

region and is defined by

b
vi o= -f E- dp . (33)
a0

The value of V+ is normally a specified parameter of the

problem. The following definitions may now be obtained:

+
B; = ~Vs (34a)
. ln...
a
and .
- -jk_s b s
B =& = | g% ap - vt e7IkoS | | (34b)
0 1 b p
n; h

The higher-order mcde coefficients are determined in a sim-

ilar manner. The first step is to multiply Eq.(17) by o de
dp

and integrate with respect to p over the z = s plane.
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i b _ . i
% J £ o ae dp = BY e ik_s [ de_ dp + B oJk_s f de do
| a dp 0

b © . .
+ f o ] (8} e 3%% 4+ 8~ e3%%) ¥ %y 45, m=1,2,...
a n=l dp dp

The integrals multiplied by BE and Ba have zero value since

¢m(b) = ¢m(a) = 0. From orthogonality relations described

in Appendix D, the last integral has zero value except when

m=n
; 0, m#n

f b

? 2o iman =ty . 2

g h de I (B; e 1%° + B_ e3%%) 5 (%%n| d@p , m =n
E a dp

3

This yields:

i s b
B+ e Jans + B eJans = 1 Eo o] d(pn do . (35)
n n b g 1%, In P 3o

f P n{ de

a do

The integral in the denominator of the right-hand side is
the normalization integral for the particular Fourier-Bessel
series used in these field expansions. The integral is rep-

resented by Mi and has the value (from Appendix D):

2 2
! w2 - on [y (vy_a)J, (Y.b) - J,(y.a)N, (y.b)|? - 2 (36)
& n 2 0'Vn 1'7n 0''n 1''n n2 ) ,

- Eq. (35) can now be written in a more compact form:
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BT e7J%,S 4 g &J%,S = L f E- p “'n dp . (37)
n n M2
n

As indicated earlier, Bg and Ba are the complex coef-
ficients of the TEM waves in Region 1 which are traveling
in the positive and negative z directions, respectively.
Under the assumption of a matched waveguide in the negative
z direction, Bg will be non-zero only in the case of an ex-
ternally excited wave traveling in the positive z direction.
The TEM wave traveling in the negative 2z direction repre-
sents the reflected component of the incident TEM wave and/or
the TEM component of a transmitted wave incident on the aper-
ture from Region 2. The same definitions apply for B; and
B; which are the complex coefficients for the higher-order
modes in Region 1. In order for the solutions to the prob-
lems considered in the present investigation to be tractable,
the Bg and the B; must be either zero or known gquantities.
In theory, there is no limit to the number of incident waves
which can be treated as long as the values of the coeffi-
cients are specified. Satisfaction of the boundary condi-
tions at a perfect discontinuity would require the excita-
tion of an infinite number of higher-order modes and, thus,
all B; should be non-zero. The procedure for accurately

evaluating an infinite series of Bessel functions which is

introduced in Appendix B allows the solution of such problems

24
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with a relatively small number of terms of the resulting

series (normally less than 20).

E. Evaluation of Constants in the z > s Region
The procedures for evaluating the constanfs in the
field expressions for the z > s region are the same as for
the z < s region. For a single discontinuity, Ca and C;
are the complex coefficients of waves incident from the nega-

tive z direction and, if non-zero, are assumed to be known

quantities for the single-discontinuity case under discus-

+
0

order mode waves traveling in the positive z direction in

sion. The C, and C; are the coefficients of TEM and higher-

Region 2. The expressions for these constants are

. . b
et e7IkyS 4 T e3keS o L | TE° gp (38)
0 0 d o}
ln=‘h
c
+ -38.s . .- _jB_s 1 d + av
C_e n- + C eJ n- = E p n dp
n n d av 2 c p &
f p n| dp
c dp
b
= lf f Ei p dwn do . (39)
Un h dpe
The value of the normalization integral, denoted by Ui, is
vl - dzxi N.(Ae)J, (A.d) = J.(h )N, (A dj|2 - 2 (40)
n- "2 [Mo'*n®Y1'n 0%/ N1 Mg 2

25




F. Enforce Continuity of Transverse Fields in Aperture

The unknown constants in the field component expressions
for the regions on both sides of the discontinuity are now
defined in terms of weighted integrals over the unknown aper-
ture electric field. Fundamental boundary conditions require
that the transverse components of the electromagnetic field
be continuous across the aperture. This constraint has al-

ready been applied to the electric field component since

Ej(p,8) = s;(o,s) = g° oe(h,b) .

o) 14
Enforcing ccntinuity of the transverse magnetic field is ac-
complished by equating Egs.(19) and (27) at the z = s plane,
i.e.,

H, (p,s) = H;(o,s) , oe(h,b)

After the evaluation of B., B., C., and C' through the use of
0 n 0 n

Egs.(32), (37), (38), and (39), this equation becomes

~-jk_s
+ e "=
28,

b
1 [ o
- E. dp
n_e n_e ln§ h P

k . b
+ = ) é—[zs; e”d%ps o L J 2 o ¥n dp] 49y

- n=1l %n Mﬁ h 3o
_ Jk.s b
= -0y X L f ED do
n,e n,.e lnZ ‘h
k © : b
+ 1 - _jB_s 1 [Y.o . av¥ ay
b — { 2| =2C e*"n° + E-p n dp n (41)
T+ n=1 an( n UE bh? " T do
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The terms involving unknown constants are placed on the

left-hand side of the equation to obtain

-jk_s _ Jk,s 2k = iy
233 S ¢y =+ 1 p* e7Jops 4%,
n_p n.e N_ n=1 % T
2k, ® . b
+ —Hi ) %— c, e3Bps d¥, 1 5+ 1 3 % f Eg do
+ n=1 *n do n_ ln; n, lnE h
k o b )
+ ) 12ngpd¢ do ae
- n=1 anMn h do J dp
k, o« b ]
+ o 1ZJE°pd“'ndp ay
4 n=1 8,07 'h P Tp ar

A proper integral equation (i.e., one equation, one unknown)
may be obtained from Eg. (41) by the application of sufficient
constraints to evaluate the unknown constants. A commonly
encountered situation is TEM excitation only and from only
one direction. For an incident TEM wave in Region 1 travel-
ing in the positive z direction, B;, Ca and C; would be zero.

The constant B; would then be evaluated from Eg.(34a).

G. Application to Simpler Geometries

The expression presented in Eq. (41) pertains to the ge-
ometry depicted in Figure 2 which is a coaxial waveguide junc-
tion which includes both an annular disk on one conductor and

steps in the radii of both conductors. Most coaxial waveguide
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discontinuities are not this complex and the appropriate
integral equations are special cases of Eq.(4l). It should
be noted that the presence of an annular disk on one or bhoth
coaxial conductors affects only the limits of integration of
the three integrals in Eq. (41); consequently, this type of
geometry variation is easily treated. For a discontinuity
consisting of a step in the inner or outer radius only,

Eq. (41) is applicable with suitable adjustments of radii

2 2

n' My Wn, Bn and Un' In ad-

values used in defining ¢n' o
dition; the proper changes must be made in the limits of
integration. For the case of a discontinuity consisting
solely of an annular disk attached to the inner or outer
coaxial conductor, as shown in Figure 3, or both conductors,
as shown in Figure 1, Eq.(41l) is simplified considerably.
Since the coaxial regions on both sides of the discontinuity
are now the same, the ¢n of Eg.(20) and the Wn of Egq. (27)
are now the same. An important and common simplification

occurs when the dielectric media in the two regions are the

same, i.e.,

€, = €_=¢ (42a)
and
The constraints of Eq.(42) result in k_=k_, a = 8., and
n, = n_.

An integral equation appropriate for the geometry of
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Figure 3a under the assumption that the excitation consists

only of a TEM wave traveling in the positive z direction is

given by

vt ek 8 1 1) I‘?Eo do

n_e lng n_e NyPl 102 /2 P

k_ = g )
| + ~ z —i_-f f Eg P d¢n do de
- n=1 anMn a do J do

k, = g )

R [ e » %%n ap| %%, (43)

+ n=1 anMn af dp do

where a; and a; pertain to the negative and positive z
b regions respectively. If the constraints of Eg. (42) are

applied to Eg. (43) a factor of % may be divided from each

term in the equatioh (noting that the two series would now
be identical). It is possible to change Eq.(43) into an
equation appropriate for the geometry of Figure 3b by chang-
ing the limits of integration for all integrals from (a,qg)
to (h,b).

An integral equation appropriate for the gecmetry of
Figure 4a with the same excitation employed in Eqg. (43) and

with the parameters Wn, B_ and Ui properly defined is given ‘

n
by
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Figure 3a, Annular Disk Attached to the Outer Conductor

of a Ccaxial Waveguide

h
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Z=s

Figure 3b, Annular Disk Attached to the Inner Conductor
of a Coaxial Waveguide
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(p,€)

Figure 4a., Step Discontinuity in the Outer Conductor
of a Coaxial wWaveguide

O —»f

(p,¢€)

Figure 4b, Step Discontinuity in the Inner Conductor

of a Coaxial Waveguide
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¥
z

avt o73k.S T, 1 °e0 a5
1 b a o)
i.0 lnz ne lng n.o lnz| ‘a
k o b
+n-z 12[Eoodondp de
- n=1 anMn a® do dp
k o b
+ 2] L J 2 o <¥n dp! ¥, . (44)
+ n=1 BnUn a de J de

This equation may be changed to one appropriate for Figure
4b by changing the limits of integration from (a,b) to (c,b)
and by making the appropriate changes to the definitions of
Bn’ Wn and Ui.
H. Integral Equation for a One-Port Cocaxial Cavity

an effective way to create a one-port cocaxial cavity is
to place a perfectly conducting, transverse plate across the
coaxial wavegquide at a point on the positive z side of any
of the discontinuities depicted in Figures 3 and 4. The cav-
ity treated in this section is created from Figure 4a and is
shown in Figure 5. The expressions for the field components
in the coaxial regions are those given by Egs.(17)-(19) and
(24)-(26) with the accompanying definitions. Note that, for
the subject geometry, the radii a and c are equal.

The constants in Egs.(17)-(19) are defined by Egs. (34)

and (37) with the assumption that the only excitation is a
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Figure 5. One-Port Cavity Formed from a Coaxial Waveguide
with a Step Discontinuity in the Outer Radius
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TEM wave traveling in the positive z direction in the region
Z < s. Because of the perfectly conducting plate at z = t,

the following boundary condition is imposed:
+
Ep(p:t) =0 .

An inspection of Eg.(24) reveals that this condition is en-

forced by requiring

ct eIkt ca elket = g

o +

and

jB t _

+ -jB t -
n © n + Cn e’ "n

|
o

The resulting relationships between constants are

-j2k t

+
C0 = -CO e (45a)
and
- _ _~t —i2B t
Cn = Cn e n (45b)

Substitution of Eg.(45a) into Eg. (38) and Eq. (45b) into

Eq. (39) yields the following expressions for the constants:

ik, t b
cg = - .*e ha 3 I Eg do (46)
JZSlnk+(t-S) lng a . .
and
+jB_t b
C; = te - n 5 I Eg o 9y ap .47
j23ian(t-s) Un a do

An integral equation for the unknown aperture electric

field is again obtained by constraining the transverse mag-
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netic field to be continuous across the aperture. The fol-
lowing expression is obtained by equating Egs.(19) and (26)

with the constants defined by Egs. (46) and (47):

- )
vt e7dk_S 1 -jk_s|

b b
n_e ln; n_e lns

ondo-V+e
aD

k © b
- = ) 1 - [ 0 5 9% 4ol ¢4,
, - n=1 anMn a o de
ejk+(t-s) + e

-3k, (t-s) fb

: j2sink, (t-s) 1n§ n,o

k+ © ejBn(t-S) + e-jen(t-s) [on av
a

+ 2 Y
"+ n=1 | 3j2sing_(t-s) 8_ul ° " 35 |
Collecting terms yields the equation:
vt o~ Jk_s (3 jeotk, (t-s)) b
. 5 = b~ 3 E. de
N n_e lnz n_e lnz nge 1ng |‘a
k © b
¥ * = ¥ 1 3 [ Eg o 90 apl 9%,
{ - n=1 lo M ‘a do dp
k o [jcotB_(t=-s) (b
- n_t ) _.__..2._._“ [ E:g 0 a¥, do a¥, | (48)
+ n=] BnUn a dp do




I. Microwave Circuit Concepts
As described in Chapter I, essentially all early treat-
ments of waveguide discontinuities were directed toward cal-
culating the resulting change in admittance of the waveguide.
| ' With the assumption of lossless waveguide walls and dielec-
trics, these admittance changes are purely reactive in na-

: ture. The susceptance expressions found in the Waveguide

Handbook provide excellent data for comparison with results
obtained from solutions to the previously derived integral
equations. Since such solutions yield only the radial com-
ponent of electric field in the aperture, a small amount of
additional analysis is required to compute values of suscep-
tance due to the discontinuities. :

Consider a uniform transmission line extending to z = f«
which has a single discontinuity at z = s. Such a transmis-
sion line is depicted in Figure 6. The admittance at z = s

looking in the positive z direction is given by

+ .
YL = Yo + jiB

X . R A

where Y; is the transmission line TEM characteristic admit-

! tance for z > s and B is the TEM susceptance of the disconti-

nuity. The characteristic admittance of the line for z < s

is designated Yo

The complex TEM (voltage) reflection coef-

ficient in the region z < s is defined by
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Figure 6. Junction of Two Transmission Lines of Different
Characteristic Impedance with a Lumped Suscep-
tance at the Junction




Y, = Y .
F(z) = 2 L JJ2k_(z-s)
‘{0+YL
or - +
Y, - (Y, + jB) . -
F(z) = E 3 eJZk-(z s) (49)
Y, + (¥, + B)

From Eq.(49), an expression for the normalized susceptance

at 2 = 8 is obtained

1
+ - + o=
iB _ L7 Yo/t m TSI *+ ¥o/¥y) (50)
Y, 1 + TI(s)
For transmission lines where Yg = Ya, Eg.{(50) becomes
8. z2s) (51)
¥, 1+ T(s)

In the transmission line (or waveguide) region z < s,
the TEM voltage reflection coefficient is the ratio of the
reflected TEM voltage (or electric field) wave to the inci-
dent TEM voltage wave, As noted in Section D of this chap-
ter, Bg and Ba are the complex coefficients of the positive
and negatively traveling TEM waves for Egs. (17)-(19) which
are defined for the z < s region. The reflection coefficient

can now be represented by

. BT elk.S B, .
r(z) = r{s) eJ2k_(z=8) _ 3 — eJZk_(z-s) = _% eJ2k_2 (52)
B, e %-% B
0 0
38
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1 The reflection coefficient can be defined in terms of the
aperture electric field through the use of Egs. (34as&b)

jk_s

V+

e

b ,
T(s) = [ f E® ap - v* e7IK.S | | (53)

h P

The susceptance of the discontinuity may then be calculated

through use of Eqg. (50) or Eqg.(51). It should be noted that

Eg. (53) is a normalized expression since Eg is linearly re-

lated to V+.
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! CHAPTER III

NUMERICAL SOLUTION TECHNIQUE

A. Introduction

A solution for the unknown aperture electric field dis-
tribution in Eq.(43) may be obtained through use of the
method of moments, Ref.[9]. Application of such a method
requires intelligent choices of a set of expansion or basis
functions. For the waveguide discontinuities being treated

in this investigation, once a solution for the aperture

field distribution is obtained, all other guantities of in-
terest can be calculated. The desired field and susceptance
values are calculated from integrals of the aperture electric
A field and weight functions over the aperture. The sample
. solution technique illustrated in this chapter is applicable

to all single-aperture equations.

B. Selection of Basis and Testing Functions

An inspection of the integral under the summation sign
in Eg. (43) reveals that the integral is easily evalusted if
the value of pEg is constant over the range of integration.
This may be effected by the choice of the following sub-

sectional, constant-value pulse expansion for the unknown
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aperture field. The expansion is illustrated in Figure 7.

N
Q

= P 54

e Ej(9) 21 Eq q(p) (54)

where

l, pelr =-4/2,r _+A/2)

Pylo) = d q (55)
0, otherwise

and rq = a + (g-%)4 where 4 = (g-a)/N is the pulse width.

Substituting Eq.(54) into Eq. (43) yields

vt eIk s Ty 1) 1 (9 ‘g - 1,
' T . b |ne Ao b q PqlP) 7 de
s n_p ln= - + ln= ‘a g=1 :
, - a a
k_ @ g N
* = ) J; > f ! E_2 (o) %%n ap| 4n
- n=1 anMn a g=1 9 49 de doe

k @ g N
+ == ] izf ] B P_(0) %nac| %0 . (s6)
+ n=1 anMn a g=1 T 49 dpe dp

The first integral is easily evaluated:

g N N rq+A/2
[ P E P () 2dp= § E L 4o
ag=y 9 9 e q=1 r -A/zp
q ~
N
F = qzl gq 1n{(rq+A/2)/(rq-A/2)} . (57)

The last two integrals have the same value which is given

! by
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®
"
o

Figure 7, Illustration of Numerical Solution Technique
* Expansion and Testing Functions
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r +A/2

Iq 1; lg g i
E_P_(p) do_ = E de :
= 9 g n = q n
a g=1 g=1 r -8/2
q
N
= q£1 Eq [0,(xg*8/2) = ¢ (ro-8/2)] . (58)

After the substitution of the integral values of Egs. (57)

and (58) into Eg.(56), the following equation is obtained

+ -~Jjk_s N
2v_e = - nlp + nlp 1b Y E_ ln{(r +4/2)/(r_=4/2)} ‘
n_p 1ln2 - +P} 1n2 g=1 ¢ q !
-~ "Ma a
k. = N )
- 1 dd
+ — ] = ] E_ [0 (r +8/2) = ¢ _(r_-A/2)] n
- n=l (oMl q=1 30T nq | @
k, =« N )
+ 1 de
+ — 7 L E_[¢ (r +4/2) - & (r _-4/2)) (59)
"+ n=1 a+M2 gq=1 q noq noq dpe
nn J
An important consideration in the selection of a set of

testing functions is the avoidance of "sampling” the integral
equation at a point where the aperture field has a singular-
ity. All planar discontinuities discussed in the report
possess 90 degree or 180 degree exterior corners at which
points the normal component of electric field is singular.

4 The integral equation for the aperture field of a planar co-
axial waveguide discontinuity such as given by Eq.(43) pos-
sesses the same important features as does the integral equa-

tion for the two-dimensional, conducting strip illuminated by
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a TM wave (and the infinite slot illuminated by a TE wave).
The experiences of Butler, et al., Refs.[23] and [24], sup-
port the selection of constant-value, pulse basis functions
with the testing functions consisting of Dirac delta func-
tions at the pulse centers. Delta functions used in this
manner are commonly called "match points." The set of R

match points, which is illustrated in Figure 7, may be ex-

pressed mathematically by
T(p) = (G(p-rl),...,6(p-rp),...,6(p-rr)). (60)

The testing functions force the subject equation to be valid

at each point

p = I'p = a + (p'%)A r p = 1,2,.-.'R .

Substitution of the expressions

rq + A/2 a + g

rq - A/2 a + (g-l)aA =

for the pulse limits in Eg. (59) simplifies the notation

somewhat. By sampling Eq.(59) at a set of R = N match

points, a set of N algebraic equatioins for N unknown Pulse

amplitudes is obtained which can be solved for the unknown

electric field in the aperture. This set of equations is
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represented by

N
1 1 +, -
+ —ZEln{r r}
r nr] b 9 a'%q

N [ =
- 1 + - dé_(r.)
+— | E ) —— (o (x) = ¢ ()] n
M- gq=1 ¥ {n=1 o> 7 ¢ nfqll —g=- ]

k N rua \l
+ 1 + - dé_(r.)
+— J E I = [0 (r) = ¢ _(r )] n'"p
» +q=1 9 \n=1 a;Mi noq noq dp J '
p=1,2,...,N (62)

The final expression given by Eq.(62) is now in a de-
sirable form for numerical determination of Eq. Special
attention must be paid to the convergence of the infinite
series of Bessel functions. In general, such series have
poor convergence properties and operations on the series to
improve the rate of convergence are warranted. A very ef-
fective procedure for improving the convergence of series
such as that in Eq.(62) is described in Append:ces B and C.
Application of the procedure does not affect the form of
3 the equation since the operations are only upon the series,

but the additional step of determining the asymptotic form

of the series elements is required.

C. Numerical Results for Single Discontinuities
A digital computer has been employed to obtain solu-

tions to Eq.(62) with constant ratios of a, b and ¢ at five
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different frequencies. The real and imaginary parts of the
aperture electric field are plotted for a frequency range
that extends from below to above the cutoff frequency for
the first higher-order mode in the waveguide. The first
three frequencies are below and the last two are above cut-
off. All plotted field distributions display a % variation
near the center conductor and a singular behavior as the
edge of the disk is approached. For frequencies above the
cutoff, the imaginary part normally exhibits one or more
zero crossings. The aperture field distributions for an
annular disk attached to the center conductor of a coaxial
guide (Figure 3b) are shown in Figure 9. 1In this set of
curves, the singular behavior is again displayed near the
edge of the disk, and the % variation becomes apparent near
the outer conductor.

Similar results for the steps in outer and inner radii
of the coaxial guides illustrated in Figures 4a and 4b are
presented in Figures 10 and 1l1. The behavior of the aper-
ture field distributions is analogous to that shown in Fig-
ures 8 and 9 with the singular behavior being less pro-
nounced near the 90 degree edges than for the 180 degree
ones. In Figure 12 are shown the aperture field distribu-
tions obtained when a shorting plate is added to the geom-

etry of Figure 10 to create a one-port cavity.
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In Figure 13, the effect of varying the number of
basis function pulses across the aperture is presented for
the goemetry of Figure 3a. The plotted curves show that
the correct % behavior is captured by even a few pulses
across the aperture. The nature of the field singularity
becomes much more evident as the number of pulses is in-
creased. Because most of the gquantities of interest in
this investigation are calculated from an integral of the
aperture field, the effect of missing the fine detail of
the singularity is substantially reduced, a fact that is
demonstrated in Table 6.

In Tables 1 through 5 are presented values of suscep-

tance computed from expressions in the Wavequide Handbook

for the discontinuities depicted in Figures 3a, 3b, 4a, 4b
and 5. Also in each table are the corresponding susceptance
values calculated from Eq.(50) and (51) with the aperture
field approximated by means of solutions to integral equa-
tions. The use of Egs. (50 and (51) requires evaluation of
the aperture field integral in Eq.(53). The value of this
integral is obtained by evaluating the right-hand side of
Eg.(57) with the known values of Eq.

The variational approach used in the derivation of the

susceptance expressions in the Waveguide Handbook also in-

volves determining an approximation for the aperture field.

For assumed aperture electric field distributions that dif-
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fer from the true distribution by a small amount, the re~-
sulting susceptance computations are only slightly larger
than those that would be computed from the true distribution.
It should be recalled from Chapter I that, with the varia-
tional approach, a first-order error in the aperture distri-
bution results in only a second-order error in the calculat-
ed susceptance. This discussion tends to indicate that the
smaller of two calculated susceptance values is the more ac-
curate; however, caution must be exercised since the exact
answer is not known. The concept of the true susceptance
value being a local minimum is supported by the results pre-
sented in Table 6 where complex admittance calculations are
given for three variations of the discontinuity in Figure 3a
as the number of basis function pulses is increased. Both
the real and imaginary parts of the admittance appear to be
converging to lower bounds. For the two cases where the
frequency is below cutoff, the real part rapidly tends toward
zero as the number of pulses is increased. As the number of
pulse functions is increased, there is a requirement for a
larger number of terms in the Bessel function series to main-
tain accuracy because representing a narrow pulse with a
Fourier-Bessel series requires a greater number of terms

than does a wider pulse. It is probable that at some point
numerical error will become significant, but, even with this
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caveat, the concept of the lower bound on calculated suscep-
tance being the correct value is supported.

In Tables 7 and 8, the effects of increasing the num-
ber of terms in the modified higher-order mode series are
demonstrated for two different size pulse expansions in
three different apertures. The convergence behavior shown
in Table 6 is not present. After a relatively few terms in
the series have been computed, an oscillatory behavior is
observed which appears to converge toward an ultimate correct
value. It is expected that numerical error becomes a factor
before the final limit is identified, but, because this con-
vergence behavior manifests itself in relatively few terms,
the magnitude of such error appears to be small.

The calculated integral equation data presented in
Tables 1 through 5 contain calculations made at the cutoff
frequency for the TMOl mode in the larger section of wave-
guide. These calculations are actually made in the limit
as the frequency approaches the cutoff point and are courtesy
of the small inaccuracies introduced by the computer. The
integral equations have terms which are undefined at these
transverse resonance frequencies. This attempt to sidestep
the singular nature of the equations is rewarded by negative
real parts for the admittance in three of the tables. The
relatively large real parts (although very small when com-

pared to the imaginary parts) of the admittances calculated
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at the cutoff frequencies in Table 5 are alsoc a product of

computer error.

It is not possible to draw conclusions on the relative

accuracies of the integral equation and Waveguide Handbook

approaches without establishing parameters. It appears to
be always possible to take sufficient expansion pulses and
series terms to calculate an admittance correction which is

smaller than the corresponding Waveguide Handbook figure.

All calculations made for Tables 1 through 5 and for Tables
10, 11, 12, and 13 used 20 pulses and 30 series terms. This
pulse-series combination gives very acceptable results with
minimal computer time expenditure.

It is possible to compare integral equation results with
more accurate calculations of coaxial discontinuity suscep-
tance. A. Jurkus, Ref.[13], has produced a refinement of
P. I. somlo's computer code, Ref.[10], which employs the
Hahn series approach developed by Whinnery, et al., Ref.[8].
Jurkus presents results for the capacitance of a coaxial
waveguide with a step in the inner conductor. His calcula-
tions contain 10 digits and the numerical precision is claimed
to be t1 in the fifth digit. In Table 9, comparisons are pre-
sented for the results obtained for the Jurkus, integral

equation, and Waveguide Handbook approaches. The integral

equation calculations were made with 50 pulses and 50 series

terms. Jurkus' results, which employed 1000 series terms
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compared to Somlo's 40, are uniformly slightly less than 0.3%
below the integral equation results. The approach employed
by Jurkus, et al., does not involve the solution of a set of
simultaneous linear equations, so there can be no straight-
forward comparison of numerical computation expense. Ex-
perience gained during this effort strongly indicates that
the magnitude of the computed integral equation capacitance
could be reduced below that of Jurkus by using a sufficient
number of expansion pulses. It should be noted that the
agreement of the integral eguation capacitance for both
geometries was obtained by different calculations. 1In
Chapter IX, Table 14 presents a number of comparisons of the
capacitance of a coaxial-to-circular waveguide junction in
which the integral equation results are shown to be very

accurate.
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' TABLE 1.

e/A

0.0010
0.0100
0.0500
0.1000
0.2000
0.3000
0.4000
0.5000
0.5600
0.5817
0.6000
0.7000

e/

0.0010
0.0100
. 0.0500
0.1000
0.2000
0.4000
N 0.5000
1 0.6000
: 0.8000
0.9000
0.9945
1.1000

!
!
i
!

CALCULATED SUSCEPTANCE OF AN ANNULAR DISK ATTACHED TO THE
QUTER CONDUCTOR OF A COAXIAL WAVEGUIDE (NORMALIZED)

a=c/6 b = ¢/2
Waveguide Handbook Integral Equation
0.0 + 30.00156520 0.00058660 + j0.00157331
0.0 + j0.01565200 0.00058659 + j0.01565393
0.0 + j0.07850436 0.00058634 + j0.07890602
0.0 + j0.15850730 0.00058555 + j0.15928538
0.0 + j0.33006177 0.00058209 + j0.33135521
0.0 + §0.53492015 0.00057511 + j§0.53571828
0.0 + j0.82068523 0.00056125 + j0.81659679 #
0.0 + 31.38924230 0.00052592 + 31.34509956
0.0 + 32.82512207 0.00043400 + 32.38070170
Cutoff Freq -0.00005884 + 37.67352323
Above Cutoff 3.11703197 + 31.61050941
Above Cutoff 1.64412242 + j0.38996023
a=c¢c/2 b = 2¢/3
Waveguide Handbook Integral Egquation
0.0 + j0.00197451 0.00003314 + j0.00199170
0.0 + 30.01974593 0.00003314 + 30.01991780
0.0 + 30.09882843 0.00003314 + j0.09968915
0.0 + j0.19827879 0.00003313 + j0.20000873
0.0 + j0.40167294 0.00003311 + j0.40520104
0.0 + 30.84941823 0.00003302 + 30.85702615
0.0 + 31.11344261 0.00003293 + j1.12347096
0.0 + j1.42841388 0.00003280 + j1.44118492
0.0 + 32.43356469 0.00003227 + 32.45173828
0.0 + j3.61737121 0.00003151 + 33.62722902
Cutoff Freq 0.00001057 +330.33650604

Above Cutoff
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TABLE 2. CALCULATED SUSCEPTANCE OF AN ANNULAR DISK ATTACHED TO THE
INNER CONDUCTQOR OF A COAXIAL WAVEGUIDE (NORMALIZED) ;
I
I
a=¢/6 b= ¢/2
e/ Waveguide Handbook Integral Equation
0.0010 0.0 + 30.00362468 0.00027283 + 30.00365967
0.0100 0.0 + j0.03625057 0.00027254 + 30.03660017
0.0500 0.0 + j0.18170876 0.00027267 + j0.18342761
0.1000 0.0 + j0.36631767 0.00027309 + 30.36956776
0.2000 0.0 + j0.75753951 0.00027487 + 30.76232629
0.3000 0.0 + 31.21013329 0.00027839 + j1.21116118
0.4000 0.0 + j1.80461695 0.00028501 + 31.78144529
0.5000 0.0 + 32.88524378 0.00029977 + j2.67602259
0.5600 0.0 + j5.72519939 0.00032587 + §3.85053889
0.5817 Cutoff Freg 0.00038165 + j5.81638213
0.6000 Above Cutoff 2.15903638 + §5.12827991
0.7000 Above Cutoff 3.62498168 + 34.91082115
a=c/2 b = 2¢/3
e/ Wavequide Handbook Integral Equation
0.0010 0.0 + 30.00083319 0.00007785 + j0.00085388
¥ 0.0100 0.0 + j0.00833212 0.00007785 + j0.00853904
0.0500 0.0 + j0.04168796 6.00007786 + 30.04272324
0.1000 0.0 + j0O.08354763 0.00007787 + 30.08562268
0.2000 0.0 + 30.16849223 0.00007795 + 30.17268213
0.4000 0.0 + j0.34899602 0.00007628 + j0.35781976
0.5000 0.0 + 30.44883165 0.00007856 + 30.46044428
0.6000 0.0 + 30.55951281 0.00007895 + 30.57451142
0.8000 0.0 + j0.84654291 0.00008040 + j0.86911853
0.9000 0.0 + j1.0897790S 0.00008196 + §1.09639242
0.9945 Cutoff Freq 0.00008834 + j1.70338315
1.1000 Above Cutoff 0.71330318 + j1.61754223
g
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c/A

0.0010
0.0100
0.0500
0.1000
0.2000
0.3000
0.4000
0.5000
0.5600
0.5817
0.6000
0.7000

c/A

0.0010
0.0100
0.0500
0.1000
0.2000
0.4000
0.5000
0.6000
0.8000
0.9000
0.9945
1.1000

TABLE 3. CALCULATED SUSCEPTANCE OF A STEP IN THE QUTER RADIUS OF A
COAXIAL WAVEGUIDE (NORMALIZED BY THE LEFT-HAND WAVEGUIDE)

-

a=¢/6 b =c¢/2
Wavequide Handbook

Integral EqQuation

0.0 + j0.00052259 0.00051126 + 30.00052505
0.0 + j0.00522663 0.00051126 + j0.00525117
0.0 + 30.02621644 0.00051116 + 30.02633891
0.0 + 30.05296478 0.00051083 + j0.05320808
0.0 + 30,11056802 0.00050942 + 30.11103353
0.0 + j0.18006588 0.00050655 + 30.18064396
0.0 + j0.27869199 0.00050074 + 30.27879113
0.0 + j0.47982823 0.00048527 + 30.47401488
0.0 + j0.98287410 0.00044321 + j0.390923393
Cutoff Freq -0.00007031 + j5.68891810
Above Cutoff 1.16333598 + 30.26601990
Above Cutoff 0.53058243 + j0.07136124
a =c/2 b = 2¢/3
Waveguide Handbook Integral Equation
0.0 + j0.00044256 0.00002425 + j0.00044315
0.0 + j0.00442577 0.00002425 + j0.00443165
0.0 + §0.02215205 0.00002425 + 50.02218148
0.0 + 30.04445010 0.00002425 + 30.04450931
0.0 + j0.09010117 0.00002424 + j0.09022265
0.0 + j0.19102869 0.00002420 + 3j0.19129943
0.0 + j0.25094968 0.00002417 + j0.25131700
0.0 + §0.32292430 0.00002413 + j0.32340570
0.0 + j0.55683513 0.00002394 + j0.55737816
0.0 + 30.84136428 0.00002366 + j0.84018797
Cutoff Freq 0.00000713 +314.87807544

Above Cutoff

0.90926887 + 30.12537772




TABLE 4. CALCULATED SUSCEPTANCE OF A STEP IN THE INNER RADIUS OF A
COAXIAL WAVEGUIDE (NORMALIZED BY THE LEFT-HAND WAVEGUIDE)
J
=1
as=c/6 b=c¢/2

e/ Waveguide Handbook Integral Equation

0.0010 0.0 + 30.00209161 0.00044132 + j0.00210399
0.0100 0.0 + 30.02091867 0.00044132 + j0.02104239
0.0500 0.0 + j0.10490495 0.00044144 + j0.10551809
0.1000 0.0 + j0.21179806 0.00044182 + j0.21298804
0.2000 0.0 + §0.44086145 0.00044349 + 30.44287046
0.3000 0.0 + 30.71368241 0.00044685 + j0.71510837
0.4000 0.0 + §1.09143147 0.00045356 + 31.08610510
0.5000 0.0 + 31.82817276 0.00047050 + §1.76514962
0.5600 0.0 + 33.63777780 0.00050965 + j2.99413580
0.5817 Cutoff Freq 0.00067809 + j7.50582984
0.6000 Above Cutoff 3.70562650 + 32.80386573
0.7000 Above Cutoff 2.35142230 + j0.69252237

a=c/2 b = 2¢/3

c/x Wavequide Handbook Integral Equation

0.0010 0.0 + 30.00050401 0.00010060 + j0.00050544
0.0100 0.0 + 30.00504031 0.00010060 + j0.00505455
0.0S00 0.0 + 30.02522438 0.00010060 + 3$0.02529554
0.1000 0.0 + 30.05059232 0.00010062 + 50.05073454
0.2000 0.0 + 30.10236195 0.00010067 + 30.10264547
0.4000 0.0 + 30.21519440 0.00010092 + j0.21574369
0.5000 0.0 + j0.28051462 0.00010113 + 30.28115931
0.6000 0.0 + 30.35676104 0.00010145 + j0.35739963
0.8000 0.0 + §0.58432744 0.00010275 + 30.58288265
0.9000 0.0 + 30.82080969 0.00010446 + 30.80792331
0.9945 Cutoff Freq 0.00011939 + §2.24993063
1.1000 Above Cutoff 1.06489802 + j0.63059216




i
i ' TABLE 5. CALCULATED SUSCEPTANCE OF A ONE-PORT COAXIAL CAVITY
@ ‘ (NORMALIZED BY THE INPUT WAVEGUIDE)
¥
' i
—
a = c/6 b = c/2 d = 3c
c/A Waveguide Handbook Integral Equation
; 0.00l10 0.0 - 332.52409365 0.00031693 - 332.53439935
0.0100 0.0 - 3 3.20900351 0.00031693 - j 3.20999767
0.0500 0.0 - 3 0.41926107 0.00031687 - j 0.41927976
0.1000 0.0 + j 0.25218838 0.00031667 + j 0.25249477
0.2000 0.0 - 3 0.73335669 0.00031579 - j 0.73315769
0.3000 0.0 + 3 1.02399059 0.00031401 + j 1.02483368
0.4000 0.0 + 3 0.07946839 0.00031041 + j 0.07950574
0.5000 0.0 - § 4.9826x10° 881.54673050 - j 4.9841x10°
] 0.5600 0.0 + j 0.69434893 0.00027447 + j 0.62456391
f 0.5817 Cutoff Freq ~0.00004352 + j 5.67004190
F 0.6000 Above Cutoff 0.00020467 + 3 2.26837281
’ 0.7000 Above Cutoff 0.00035314 - j 1.12708972
)
3 a=c/2 b = 2¢/3
1 e/ Waveguide Handbook Integral Equation
0.0010 0.0 - j22.01537281 0.00001714 - j22.01574949
0.0100 0.0 - 3 2.17127699 0.00001714 - j 2.17130840
' 0.0500 0.0 - § 0.27939034 0.00001714 - j 0.27936609
0.1000 0.0 + j 0.17930395 0.00001713 + 3 0.17936609
s 0.2000 0.0 - 3 0.48114894 0.00001713 - j 0.48103724
4 0.4000 0.0 + § 0.05617483 0.00001711 + j 0.05644327
K 0.5000 0.0 - 3 3.3727x10° 403.14432740 - j 3.3728x10°
0.6000 0.0 + 3 0.45777816 0.00001705 + j 0.45826186 -
0.8000 0.0 + 3§ 1.12808524 0.00001692 + 3§ 1.12863794
] 0.9000 0.0 + j 0.70651042 0.00001672 + § 0.70533203
{ 0.9945 caroff Freq 0.00000501 + j18.90491948
! 1.1000 Above Cutoff . 0.00001645 + 3§ 1.53150870
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TABLE 6. CALCULATED SUSCEPTANCE OF AN ANNULAR DISK ON THE OUTER
CONDUCTOR OF A COAXIAL WAVEGUIDE AS THE NUMBER OF
EXPANSION PULSES IN THE APERTURE IS VARIED (NORMALIZED)

a=g/S b = 4¢/5 A = 2¢c A = 1.65¢

cutoff
Waveguide Handbook Susceptance = 0.0 + j0.16470255

No. of A Integral Equation

Pulses by Susceptance
5 0.0600 0.01727536 + 30.18367030
10 0.0300 0.00446745 + j0.16502277
15 0.0200 0.00199920 + 30.15899635
20 0.0150 0.00112726 + j0.15601510
25 0.0120 0.00072224 + 30.15423484
30 0.0100 0.00050185 + 3j0.15305148
35 0.0086 0.00036883 + 30.15220771
40 0.007% 0.00028244 + j0.15157575
50 0.0060 0.00018081 + 30.15069203

a=c¢c/S b = 2¢/5 A= 2¢ xcutoff = 1.65¢

Wavequide Handbook Susceptance = 0.0 + j2.27553677

No. of A Integral Equation

Pulses by Susceptancs
5 0.0200 0.00307077 + 3§2.32601738
10 0.0100 0.00076432 + 32.28872639
15 0.0067 0.00033898 + 3§2.27678771
20 0.0050 0.00019045 + 32.27091264
25 0.0040 0.00012180 + 32.26741777
30 0.0033 0.00008454 + 32.265100%9
3s 0.0029 0.00006209 + 32.26345157
40 0.0025 0.00004752 + §2.26221827
50 0.0020 0.00003040 + 32.26049647

a=c/S b = 2¢/5 A = ¢/S Acutoff = 1.65¢c
Wavequide Handbook Susceptance = Above Cutoff Freq

No. of 4 Integral Equation

Pulses by Susceptance
s 0.2000 2.6361691S + 30.18763705
10 0.1000 2.59431266 + j0.17881963
15 0.0667 2.58133988 + j0.17437867
20 0.0500 2.57510034 + j0.17181552
25 0.0400 2,57144336 + 30.17015885
30 0.0333 2.56904400 + 30.16900265
3s 0.0286 2.56734976 + 30.16815072
40 0.0250 2.56609013 + 30.16749720
50 0.0200 2.56434298 + j0.16656094

A = Width of Pulse 30 Terms were calculated in the series
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TABLE 7. CALCULATED SUSCEPTANCE OF AN ANNULAR DISK ATTACHED TO THE OUTER
CONDUCTOR OF A COAXIAL WAVEGUIDE AS THE NUMBER OF TERMS IN THE
HIGHER-ORDER MODE SERIES IS VARIED (NORMALIZED)

APERTURE FIELD EXPANDED IN 20 PULSES

a=c/S b = 4c/3 a=c/s b = 2¢/5 a=c/S b = 2¢/%
A = 20c Aeutose = 1-65¢ A = 20c Acueogs = L-65¢ A =c/S Acyeogs = 1-65¢
Navequide Handbook Susceptance Waveguide Handbook Susceptance Wavequide Handbook Susceptance

0.0 + 30.01280232

0.0 + 30.14230349

Above Cutoff Prequency

Terms

Integral Equation

No.

Tezms

Integral Equation

No.

Terms

Integral Equation

in Series Susceptance in Series Susceptance in Series Susceptance

1 0.00118614 + 30.01351677 1 0.000200%9 + J0.15513573 1 1.37815686 + 3j4.44734382

S 0.00116467 + 30.01319154 S 0.00019970 + 30.14343800 S  2.43647412 + 30.37385966

10 0.00116489 + 30.01314581 10 0.00019960 + 30.14332278 10 2.57052629 + )0.16619757

15 0.00116502 + 30.01314133 1S 0.00019952 + J0.14334945 15 2.57297198 + j0.17056063

20  0.00116507 + §0.01314024 20 0.00019956 + 30.14334071 20 2.57426588 + 30.17093339

2%  0.00116508 + 30.01313959 25 0.00019953 + j0.14334229 25  2.57486588 + j0.17160180

30 0.00116507 + j0.01313960 30 0.00019955 + 30.14334152 30 2.57510034 + j0.17181552

40 0.00116506 + 30.0131397S 40 0.00019955 + j0.14334104 40 2.57524851 + j0.17171150

S0 0.00116506 + 40.01313969 S0 0.00019955 + 30.14334051 SO  2.57532391 + 30.17195233
TABLE 8. CALCULATED SUSCEPTANCE OF AN ANNULAR DISK ATTACHED TO THE OUTER

CONDUCTOR OF A COAXIAL WAVEGUIDE AS THE NUMBER OF TERMS IN THE
HIGHER-ORDER MODE SERIES IS VARIED (NORMALIZED)
APERTURE FIELD EXPANDED IN 50 PULSES
awc/S b = 4c/5 a =g/ b = 2¢/8 aec/S b= 2¢/5
A = 20¢ xcutnt! = 1.65%¢ A = 20e xcqeott = 1.65¢c A= /8 Acueot! = 1.65¢

Waveguide Handbook Susceptance
0.0 + 30.01280232

Wavequide Handbook Susceaptance
0.0 + 3 .14230349

Waveguide Handbook Susceptance
Above Cutoff PFrequency

No. Terms Intagzral Equation
in Series Susceptance

1l 0.00018993 + 30.0131073%

S 0.00018667 + 30.01278999
10 0.00018669 + 30.01274783
15 0.00018671 + 30.012743%50
20  0.00018871 + 30.01274270
25 0.00018672 + §0.0127422¢
30 0.00018672 + 30.01274206
40 0.00018671 + 30.01274218
50 0.00018871 + $0.01274213

No. Terms Integral Equation
in Series Susceptance

1 0.00003203 + 30.15424329

S 0.00003189 + J0.142734823
10 0.00003188 + 30.14261662
15 0.00003186 + 310.14264501
20 0.00003187 + j0.14263678
25 0.00003187 + $0.14263748
30 0.00003187 + 30.14263699
40 0.00003187 + 30.14263666
50 0.00003187 + j0.14263606
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No. Terms Integral Equation
in Series Susceptance

L 1.37399736 + 34.39469120

H 2.42160653 + 30.36707202
10 2.55995962 « j0.16163260
1S 2.56233020 + 30.16%42236
20 2.56360487 + 30.16577117
28  2.58423201 + 310.166360831
30 2.56434298 + j0.16656094
40 2.56447746 + 30.16663387
50 2.56453807 + 30.16666803



TABLE 9.

COMPARISONS QF CALCULATED CAPACITANCE OF COAXIAL
STEP DISCONTINUITIES WITH RESULTS OF A. JURKUS

2b

2¢

| a = 0.209672 cm

Freq
GHz

0.000
1.000
, 2.000
i 3.000
4.000

Fregq

0.000
1.000
2.000
3.000
4.000

Jurkus Integral Equation ide Handbook
Capacitance Complex Capacitance Capacitance
femtoFarads femtoFarads femtoFarads
18.87112905 0.0006691302 + j18.92582501" b
18.87742237 0.0000000008 + j18.93211996 18.96409053
18.89635437 0.0000000003 + j18.95105772 18.98333401
18.92808243 0.0000000002 + j18.9827950% 19.01559548
18.97287338 0.0000000002 + j19.02759828 19.06116396

b = 0.714375 cm

c = 0.310205 cm

b

2a

AAAT 2¢

= 0.310205 cm b = 0.714375 em
Jurkus Integral Equation Wavequide Handbook

Capacitance Complex Capacitance Capacitance
femtoFarads femtoFarads femtoFarads
18.87101768 0.0006691302 + j18.92582501' boded
18.87731097 0.0000000006 + j18.93211996 19.96409053
18.89624288 0.0000000004 + 318.95105772 18.98333401
18.92797080 0.0000000002 + j18.98279505 19.01559548
18.97276154 0.0000000001 + 319.02759828 19.06116396

:'tntoqral EqQuation calculation at 1000 Hz
No Result
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CHAPTER 1V

INTEGRAL EQUATIONS FOR A TWO-PORT COAXIAL CAVITY

E | A. Introduction

In Chapter II, integral equations are derived for the

‘ transverse electric field in the apertures of the coaxial

waveguide discontinuities depicted in Figures 3 and 4. Sub-

SO

sequently, it is demonstrated that a one-port coaxial cavity ;

can be formed by adding a shorting plate to a waveguide con-

b e

taining a discontinuity, and the integral equation appropri-

ate for such a geometry is derived. The analysis is now un-

dertaken for the treatment of a two-port, coaxial cavity
formed .y placing two discontinuities in a coaxial waveguide.
Such a geometry is illustrated in Figure 14 where three re-

gions of interest are defined:

Region 1: z < s
Region 2: s < 2 < ¢

Region 3: z > t .

' B. Expressions for Field Components

In order to describe the field in each of the three re-

gions, three sets of expressions equivalent to those of

Egs. (17)-(22) are required. The following set of equations
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represents the field in each of the three regions where the

individual regions are specified by i = 1, 2, or 3.

gl = gt eIk 2 + B eJk;z
p io p io [+
S o at - as
+ 1 (Bj e 3%in?% + B;, e3®in?) %in ,
n=1 de
2
i E Yin ( + -ja, z - ja z)
ES =3 —— (B e in® - B, e” in &.
Z n=1 %in in in in
gt = gt e 3k;2 - eIk
¢ i0 nlp 10 nip
k;, = . .
+ ﬁi ) al—(BIn e 1%n? - Bin e3%in?) 9%, ,
i n=1 “in do
where
and
2 _ .2 _
%in = Xin = Yin

The oin are the roots of the transcendental equations:

®1n(P) = Nyl(yya)J,(v . b) = J,(v 2N, (v, D) o,

Pan(S) = No(¥y,3)35(¥pC) = Jo (v )N (v e) = 0,

0

¢3n(d) ND(Y3na)J0(Y3nd) - JO(Y3na)N0(Y3nd)

where a, b, ¢ and 4 are radial dimensions defined in

65

(63)

(64)

(65)

(66)

(67)

(68a)

(68Db)

(68¢c)




Figure 14. The dielectric medium in each of the three re-

gions is characterized by the parameters:

ki = w /EE (69a)
and
U,
n = E—l ) (69b)
i

C. Evaluation of Constants in Field Expressions

The procedure for evaluating the expansion constants
in Eqs;(63), (64) and (65) for i = 1, 2 and 3 is the same
as that employed in Chapter II. The unknown aperture field

in each of the two discontinuities is designated

1 _ wl 1
Ep(D-S) = Ep(OpS) = Ea {70a)
and
2 _ =3 _

The above notation allows the unknown constants in all
three regions to be expressed in terms of weighted inte-
grals over the app-opriate aperture fields. A notation is
adopted for representing the individual integrals which
will allow the resulting equations to be written more com-
pactly. Each integral will be denoted by I; where i is

the number of the aperture, p = 0 represents a weight func-

tion of unity, and p = mn indicates the use of the proper
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Biie 2 ckial

Bessel function weighting factor. The following expressions
are obtained for the constants in each region by application

of the Fourier-Bessel series technigques described in Chapter

II.
Region 1l:
P o3k X 1 (P 1
B e~ %15 L el®1S = = Edo=—Il (71a)
1,0 1,0 b a b "0
In=- ‘a 1n—-
a a
e LD I LRUC IS S e NS PP RS B P
1n - 1n MZ a2 P 1;—5 e = M§ 1in
ln e 1n
Region 2:
+  _~jk.s . .- _dk.s _ 1 (P.1 1.1
BZ 0 a 27 + BZ 0 e- "2 = - I Ea dp = - IO (72a)
! ! Ins ‘a in=
a
+ ~ja, s . .- _Ja,.s _ 1L (P1  ao p .1
B e 2n” + B e’ 2n° = —5— E. p 2n do = -5~ I (72b)
2n 2n M2 a a 3 “2 2n
2n P “2n
+  =jkot L - Gkt _ 1 [32 2
B e 2" + B e’'"2" = —— ESdp = —=—1I (73a)
2,0 2,0 c c 0
In= ‘a iIn=
a a
¢ -jo, t . .= Ja,t_ 1 [¢ de 1 .2
B e 2n- + B e’ 2n" = ~—— EC o 2n dp = —— I (73b)
2n 2n 2 a —_— 2 2n
M2n a de M2n

* The subscript notation 1,0 is used where there is a chance
of =misinterpretation; otherwise, the comma is omitted in the

subscripts of the unknown constants and integral symbols.
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Region 3:

By , e %3t 4 By o 3% = X f B2 ap = L 12 (74a)
' ! 1inS /a 2 iln= 0
a a
s .y a
BY e™3%n% + BT e3%3nt = L B2, 9%35 40 = L 12 . (74p)
3n 3n M2 a 2 a5 M2 3n
3n P 3n

In Region 1, the constants for the waves traveling in
the negative z direction may be expressed in terms of the

constants for the positive-traveling waves:

- _ .~jk,s 1 1 _ 4+ -jk,s
Bl'0 = e 1 [I—B I0 Bl'0 e 1 (75a)
n-—
- _ _=Jjoa,_s 1 1 _ L+ -ja,_s
Bln = e 1n ;7— Iln Bln e 1n } . {75b)
ln

In Region 2 there are four unknown constants and also four
equations given by Egs.(69) and (70). It is therefore pos-
sible to express each constant in terms of aperture-~field

integrals:

B o = L - [tlt e® ¥t 1 12 e*jkzs] (76a) .
! jZSinkz(t-s) ln=
a
+ _ 1 1 tja, t = .2 tja,_ s
B2n = 3 [tIZn e 2n- + Izn e 2n ] (76b)

j25ina2n(t—s) M2n

In Region 3, the constants for the waves traveling in the

positive z direction are expressed in terms of the constants
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for the negative-~traveling waves:

+ _ . Jk,t 1 2 _ - jk.t
83’0 = "3 [I—a Io B3’0 e’ "3 (77a)
n—
a
+ - Jja,. .t 1 2 _ JaL. t
B3n e’ "3n ;5— I3n B3 e-“3n . (77b)
3n

D. Enforcing Continuity of Transverse Fields in Apertures
The next step in formulating an integral equation for
the trqnsverse electric field in each of the two apertures
is to require that the transverse component of the magnetic
field be continuous across each aperture. The continuity
requirement on the transverse electric field already is en-
forced by Egs.(7Q0a&b). An eguation is now obtained by re-

quiring that Hi(p,s) = Hi(p,s):

+ -jk.s
231’0 e 1 1 1
n,e - 1n2 o
nlp a
kb ¢ 1 .1) do
+ — Z G.L‘ ZBIn e Jalns - 5 Iln ln
1 n=1 %1n M7 dp
n
- 1 _ [I% oIk, (E=8) 215 . It e-sz(t-s)J
32slnk2(t-s) n,e lng
k ® .
2 1 1 Ja, (t=s) _ ,.2
+ = 7 I2n e’ "2n ZI2n

"2 n21 j2sina, (t-s) a, M2




Collecting the terms with unknown constants on the left-hand

side yields the equation

+ -jk.s
Bro® Tt BT 2 4 -ja s asg
NP " n=1 %*1n 1B o
k -
I S T]_1 1 . Iin ae,
NP ln= 1 n=1 alann dp

S {It coskz(t-s) - Ig]
) jSinkz(t-s) uPYs ln;

k @©
+ ﬁi — 1 3 (I%n cosa2n(t-s) - I%n] d¢2n .
2 n=1 JSlnazn(t°S) aZnMZn do

(78)

Inspection of Eg.(78) reveals that this equation would
be identical in form to Eg.(48) if all the constants BIn and
the integrals Ig and Ign were equal to zero. The reason for
this similarity is that Eq.(78) is the general form of the

coupled integral equations obtained when two planar discon-

tinuities are placed in a coaxial waveguide. A shorting

plate is a special case of a planar discontinuity and, there- >
fore, Eq.(48) is representative of a two-discontinuity geom-

etry. It follows that the integral equation obtained from

constraining Hi(p,t) to be equal to Hi(p,t) has the same

k:
| form as Eq.(78) and can be written as
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H
- j
2B; g3 kg = - Ja,.t do /
NP + a—- Z T B3n e’ "3n 3n !
3 3 n=1 “3n dp :
k ©
= —t—g g+ ~—t—- 13, 230
N3P ln; 3 n=1 G3nM3n dp
+ L S {Ig coskz(t-s) - Ié)
jsinkz(t-s) n,P lng
k, = ‘
+ ﬁi 1 — L 3 [Ign cosa,, (t=s) = Ién} %20 .
2 n=1 jSlnazn(t-S) an M5 de

(79)

If the constants B;,O' B;n’ B;'O and By are known,
Egs. (78) and (79) represent two integral equations for the
two unknown aperture field distributions. If the output
waveguide is matched and there is no excitation incident
from the negative z direction, B;’o and all B;n will be
zero. The numerical solution technigue described in Chapter
I1I may be applied to each equation in order to obtain ex-
pansions of the form of Eg.(54) for each aperture electric
field.

Aperture electric field distributions have been calcu~
lated for two different size two-port cavities at two fre-
quencies for each cavity and the results are presented in
FPigures 15 and 16. The two cavities that are treated are

symmetric in that the radii b and 4 as depicted in Figure 14
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are equal. The two frequencies are chosen such that one is
below and the other is above the cutoff frequéncy for the
first higher-order mode in the larger section of wave-

guide. The curves in Figures 15 and 16 display more variety
than the aperture distributions shown in Figures 11 and 12
which are for similar-size step discontinuities. The distri-
butions in Figures 15 and 16 do, however, possess the same
characteristics of decreasing in magnitude as 1 at points

P
near the center conductor and then increasing without bound

as the discontinuity is approached. 1In contrast to the

aperture distributions for the one-port cavity, there are

examples of real and imaginary components crossing the zero

axis. 8
The approximation for the aperture field at z = s
allows the calculatibn of the input admittance of the cavity

at that point through the use of Egs. (50) and (53). A

similar expression may be obtained for the input admittance

f? looking into the cavity at z = t by accounting for the direc-
tions of wave propagation. Calculated values of input admit-
tance are presented in Table 10 for two different size
cavities as a function of frequency. The admittances are
computed both from solutions to Egs.(78) and (79) and from {

4 transmission line theory with susceptance corrections from

culations are valid only for frequencies below the cutoff

j an expression in the Wavegquide Handbook. The latter cal-
Y
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frequency of the first higher-order mode in the larger cav-
ity. Comparisons between calculated admittance values and
measured ones for a two-port coaxial cavity are presented in
Chapter VII where the experimental procedures are also de-
scribed.

The approximations for the aperture fields may be used
to calculate the field anywhere in the three regions by using
thg appropriate form of Eqg.(63), (64) or (65) with the cor-
responding expressions for the constants in these equations.
In Chapter VIII, calculated and measured internal field com-
ponents at the inner surfaces of the end plates of a two-port
coaxial cavity are presented. Comparisons between calculated
and measured impedance and field data make possible quanti-
tative assessments of the accuracy obtained with integrals
of the aperture field solutions. A more direct validation
of the accuracy of the aperture field solutions is not with-
in the scope of this effort. Calculated values of the impe-
dance and distributions of field components do provide a de-
finitive estimate of the usefulness of the integral equation
solutions since these guantities are of particular interest

when characterizing a waveguide section or cavity.
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TABLE 10.

e/A

0.0010
0.0100
0.0500
0.1000
g.2000
0.3000
0.4000
0.5000
0.5600
0.5817
0.6000
0.7000

e/A

0.0010
0.0100
0.0500
0.1000
0.2000
0.4000
0.5000
0.6000
0.8000
0.9000
0.9945
1.1000

CALCULATED ADMITTANCE OF A TWO-PORT COAXIAL CAVITY
(NORMALIZED BY THE INPUT WAVEGUIDE)

_ —_—
— —
a =c/6 b =ac/2 d = 3¢

Wavequide Handbook

0.99944272 -
0.94773463
0.48852657 -
0.39078594 +
0.70760169
0.53118295 +
0.41303114 +

-

-

1.00000000
0.30982384
Cutoff

§0.01812500
30.16771975
§0.21444090
§0.15363671
§0.21443225
j0.48006425
j0.04664547
$0.95965646
$0.47922307
Freq

Above Cutoff
Above Cutoff

a=c/2

b = 2¢/3

Wavequide Handbook

0.99833581 -
0.85851552 -
0.24412759 -
0.18450972 +
0.40485674 -
0.18984262 +
1.00000000 +
0.15744697 +
0.21939101 +
0.12703252 +
Cutoff

40.03663773
30.30720201
j0.21118345
30.14622063
§0.28635255
j0.045510-6
30.50189935
§0.38570238
j0.880%9348
30.61676062
Freq

Above Cutoff
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Integral Equation
1.00196814 -~ j0.01813840

0.95022001
0.49048806
0.39245002
0.71040425
0.53239471
0.41447072
1.00239613
0.40973071
0.62882691
0.28442809
1.22676713

d = 3¢

j0.16784703
30.21455535
j0.15414453
$0.21394403
§0.48203314
j0.04752152
$0.95982762
30.37257491
j1.31400852
§1.19896375
30.26613012

Integral Equation
0.99847306 - j0.03663551

0.85865845
0.24422795
0.18457563
0.40510632
0.18990183
1.00013674
0.15731578
0.21886714
0.12713311
0.60087728
1.21393128

-

+

+ + + 4+ ¢+«

§0.30718608
j0.21110388
30.14642800
30.28601009
§0.04635422
j0.50467629
j0.38731123
30.88348416
§0.61875045
$5.25158940
40.29987103




CHAPTER V

INTEGRAL EQUATIONS FOR PARTITIONED CAVITIES

A. Introduction

In the preceding chapter, it is demonstrated that the
same general form applies for both of the coupled integral
equations for the aperture electric fields which are present
when two planar discontinuities are placed in a coaxial
waveguide. Th}s general form can be used to formulate the
appropriate coupled intégral equations for any combination
of two of the discontinuities depicted in Figures 3 and 4.
In this chapter, it is shown that with one additional
general form of an integral equation, it is possible to
treat any combination of planar discontinuities with no
limit on the number. The use 0f such a procedure is demon-
strated by placing annular disks within the geometries de-
picted in Figures 5 and 14 such that the cavities are further
partitioned into two regions which are coupled through the

aperture in the partition.

B. Field Components for a Partitioned One-Port Cavity

The one-port, partitioned cavity depicted in Figure 17

76




a1t v b

Katae) Tetxeo) jaod-auQ ‘pauoritixed °[1 aanbt g

g

£ NOI93y
(%2 )

2 NOI93d
(224

(‘1)

1 NOI93Y

°y

e— ©

.

- O

77




is formed by placing a shorting plate across Region 3 of the
two-port cavity of Figure 14. An annular disk is attached
to the outer conductor at the junction of Regions 2 and 3 to
make the problem more general. The field components in the
three regions are described by Egs. (63)-(65) with the

accompanying definitions in Egs. (66)}-(69). The unknown

aperture electric fields in each of the two discontinuities

are designated Ei and Ei

with the same definitions as given
by Egs. (70a&b). The expressions for the unknown constants

in the field expansion for Region 1 are given by Egs. (75as&b).
The expressions in Egs.(76a-d) are applicable to Region 2 if
the limits of integration for Ig and Ign are changed from
(a,d) to (a,g) to reflect the presence of the annular disk.
The constants for the field components in Region 3 are de-
rived in the same manner as for the interior region of the
one-port cavity in Chapter II. The constants have the same

form as those defined in Egs.(47) and (48) and are given by

the following expressions:

tjkqu -
B o = te - 3 3 12 (80a)
’ jZSink3(u-t) In—
a
tja, u
Ba = o I3, (80b)
3251na3n(u-t) M3n




C. 1Integral Equations for the Aperture Fields

Two coupled integral equations for the transverse elec-
tric field components in the two apertures of the geometry
depicted in Figure 17 are obtained by constraining the trans-
verse component of magnetic field to be continuous across
both apertures. The first integral equation, which is ob-
tained for the aperture connecting Regions 1 and 2, is
given by Eg.(78) with the previously mentioned changes to

2

the limits of the integrals I2 and IZn‘ This is the appro-

0
priate form of the integral equation for an aperture which
faces another discontinuity in one axial direction and an
infinite waveguide in the other direction. The aperture
connecting Regions 2 and 3 faces discontinuities in both

axial directions, thus a slightly different general form is

required for the integral equation. This equation is ob-

tained by requiring Hi(o,t) = Hi(p,t).
1 . (Ié _ e-sz(t-s)Ig - ejkz(t-s)Ig . I%
3251nk2(t-s) n,e lng
k © .
2 1 1 _ _~ja, (t-s).2
+ = 73 > [IZn e “2n Ion

n L. . -
2 n=1 3251na2n(t s) aZnMZn

2n

2n 2n 3o

- oJogn(t=8)p2 11 ] as
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|
l

2

I . .
- — 0 . (e3k3 (u-t) e-jk3(u-t)}
3251nk3(u-t) uEY ln;
ky ® 12 o .
= ! - : n > el%3pfu-t) e-3a3n(u-t)] ! P
3 n=1 JZSlna3n(u-t) a3nM3n dp

As can be seen, this equation contains no unknown constants.

Collecting terms yields

[
0= L S tIg coskz(t-s) - Ié}
]Slnkz(t—s) n,P lng

k., =
+ ﬁz ) — 1 3 (Ign cosa, (t=s) = I%n} 9%5n

2 n=1 351na2n(t-s) aanZn dpo

12 cosk., (u-t) k © 12 cosa., (u-t) dd

+ 0 3 s 3 3n 3n 3n (81)

.. _ d  ny 5y Lo - 2 dp °

]Slnk3(u t) nse lna 3 n=1 jslna3n(u t) a3nM3n

Because the discontinuity at z = u has no aperture, Eg. (81)
does not represent the most general form of the integral
equation for an aperture which faces discontinuities in both
axial directions. The most general form will be derived in
the next section where a partitioned, two-port cavity is
treated.

If the constants BI,O and BIn are known guantities,
Egs. (78) and (8l) represent two integral equations for the

two unknown aperture field distributions. Solutions for the

aperture fields may be obtained by applicatien of the numer-
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ical procedure described in Chapter III. Aperture electric
field distributions which have been calculated for two
different size partitioned, one-port cavities at two fre-
quencies each are presented in Figures 18 and 19. The two
radii ¢ and 4 in Figure 17 are equal for each of the cavities
but the apertures are of different size. One of the fre-
quencies is above and the other is below the cutoff frequency
or the first higher-order mode in the larger section of
waveguide. The aperture distributions are very similar in
form to those shown in Figure 8 for the annular disk and in
Figure 12 for the simple one-port cavity. The singular be-
havior of the distributions differs in the two apertures be-
cause of the different geometry of the discontinuities. No
zero crossing of the real or imaginary parts is observed,
as was the case in Figure 12 for the simple one-port cavity.
The input admittance of the cavity can be computed from
the approximate solution for the aperture electric field at
z = s. Calculated values of input admittance are presented
in Table 11 for two different size cavities as a function of
frequency. As in previous examples, the admittance values
are computed both from solutions to integral equations and
from transmission line theory with susceptance corrections

from the Wavegquide Handbook. The admittance data appear

to support earlier observations that the transmission line

theory with corrections is more accurate than the integsal
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equation approach for geometries where the aperture is a
significant percentage of the radius of the larger section

of wavegquide. The integral equation solutions appear to

give better results than the transmission line theory when
the aperture is a comparatively small part of the waveguide
radius. There is a pronounced peak in the input admittance
at frequencies where there is an axial resonance. The cal-
culated admittance at these frequencies has a real part that
is much greater than zero but is still many orders of magni-
tude smaller than the imaginary part. These calculations
actually give only a qualitative description of the admit-
tance at axial resonance because the value actually approaches
infinity. The numerical error introduced by the digital com-

puter allows a calculation to be made.

D. Field Components for a Partitioned Two-Port Cavity

A two-~port partitioned cavity may be created from the
geometry depicted in Figure 17 by removing the shorting plate
at z = u and connecting Region 3 to an infinitely-long section
of waveguide of a different size. Such a cavity is illustra-
ted in Figure 20. The field components in the four regions
are described by Egs.(63)-(65) with i now equal to 1, 2, 3 and

4. The unknown aperture electric field at z = u is defined

3 4 3
E;(p,u) = Ej(p,u) = E; . (82)
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TABLE 11.

a=¢/2

e/

0.0010
0.0100
0.0500
0.1000
0.2000
0.4000
0.5000
0.6000
0.8000
0.9000
0.9945
1.1000

a=c/2

e/
0.0010
0.0100
0.0500
0.1000
0.2000
0.4000
0.5000
0.6000
0.8000
0.9000
0.9945
1.1000

CALCULATED ADMITTANCE OF A PARTITIONED, ONE-PORT
COAXIAL CAVITY (NORMALIZED BY THE INPUT WABEGUIDE)

S——

1

Wavequide Handbook

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

b = 2¢/3
Waveguide Handbook

b = 2¢/3

-
+
+
+
-
-
-

j 0.04542289
j 0.46065099
j 3.61464770
j 5.20242693
j 2.49915937
311.66961875
3§ 0.62501141
j 2.00806112
j 0.41045183
3 1.21202495

Cutoff Freq
Above Cutoff

0.0 + 3 0.04542285

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

+*
+*
-

*

+

j 0.46059965
j 3.59553783
j $.37370058
§ 2.52256821
412.30740830
3 0.00000000
j 1.95779087
4 0.52793367

0.0 - j 1.295881364
Cutoff Freq
Above Cutoff

d = 5¢/6

4 = Sc/6

x = 3¢/2

y = 3¢/2

Integral Equation

0.00000014
0.00001455
0.00089707
0.00184342
0.00043327
0.00889162
0.00002848
0.00027188
0.00001040
0.00009623
0.00000000
0.00022378

x = 2¢

+ + +

[ R U N W R R W R W R

0.04541979
0.46062760
3.61712020
5.18534685
2.51429549
j11.39779337
j 0.64550426
1,99606828
0.39189766
1.19927743
0.00008060
1.81561836

LS R L= L TR ]

X = C

Integral Equation

0.00000014
0.00001454
0.00088736
0.00196982
0.00044187
0.00992517
0.00000000
0.00025766
0.0000180%5
0.00011173
0.00000000
0.00001291

+ + +

j 0.04541974
j 0.46057495
3 3.59749163
j 5.36018579
j 2.53908775
$12.04200640
§ 0.00000000
j 1.94321006
j 0.51626468
4 1.29207960
j 0.00020133
j 0.45044112
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The expressions for the unknown constants in the field ex-
pansions for Regions 1 and 2 are the same as for the one-port,
partitioned cavity. The constants for Region 3 are defined
similarly to those of Region 2 since the region is bounded on

both ends by apertures.

B§ 0= 1 3 [tlg etikau 3 Ig etjk3t] (83a)
! j25ink3(u—t) 1n=
a
L 1 2 tja, u = _3 tja,_t
B3n 3 (iI3n e " 3n" + I3 e -~"3n }. (83b)

jZSlna3n(u-t) M3n

The expressions for the constants in Region 4 are similar

to those defined in Eg. (74):

+ = aJk,u 1 3 _ 4~ jk,u
34’0 e 4 {17 IO B4’0 e 4 } (84&)
n—
a
BV = e3%4n0 [ 113 - g7 I%ypY (84b)
4n 2 4n 4n *
M4n

E. 1Integral Equations for the Aperture Fields

The structure depicted in Figure 20 has three apertures
with unknown fields, and, by following previously established
procedures, one can derive three coupled integral equations
for these unknown fields. The equation for the aperture at
z = 3 is again given by Eq.(78). It is apparent at this

point that the form of Eq.(78) is not influenced by any
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geometrical features beyond the discontinuity at z = t, al-
though the final solutions for the aperture fields certainly
are. The aperture at z = t faces discontinuities containing
apertures in both axial directions. The integral equation

appropriate for this aperture is the most general of the

equations to be developed for treatment of such apertures
in discontinuities. The equation is obtained by requiring

that Hg(p,t) = Hg(p,t)=

é : 0 = 1 S [Ig coskz(t—s) - Ié]
: jsinkz(t-s) n,0 lns

k

+ ﬁZ — 1 y; [Ign cosazn(t-s) - I%n] dq’Zn
2 n=1 ]51na2n(t-s) a2nM2n dp
+ 1 {13 cosk, (u-t) - 13]
jsink3(u-t) ns3e ln;
k o
+ ﬁi 1 3 (Ign cosa3n(u-t) - Ign] d¢3n.(85)
3 n=1 JSlna3n(u-t) a3nM3n dp :

The fact that weighted integrals of all three aperture
fields appear in Eq. (85) clearly demonstrates the interdepen-

dence of these fields. If more apertures were added, the

interdependence would still be present although integrals of
all aperture fields would not appear in the same equation.

The integral equation obtained by constraining continuity of
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the transverse magnetic field across the aperture at z = u

is of the same form as Egq.(79) and is given by

- ik . u -
2B eJ 4 k © 2B .
4,0 . + _4 4n el®4nt dQ4n
N4 "4 n=1 *4n do
1 3, % 1 3 ae
= £lo*q, L 7 I4n 40
n,P lng 4 n=1 a4nM 4n do
+ — 1 (Ig cosk3(u-t) - Ig}
]Slnk3(u-t) NP ln;
k )
+ ﬁi ) — L 3 [Ign cosaBn(u-t) - Ign] dq>3n.(86)
3 n=1 JSlna3n(u-t) a3nM3n dp
+ +

With the assumption that the constants Bl,o’ Bln’ BZ,O
and an are known quantities, Eq.(78), (85) and (86) form the
set of equations necessary to obtain solutions for the three
unknown aperture fields. The numerical technique of Chapter
III is again suitable for obtaining solutions. There is no
additional difficulty involved with treating three simultane-
ous equations beyond the "bookkeeping” problems. Simple
logic advises that the optimum solutions for a given total
number of expansion pulses would be obtained by dividing
each of the apertures into pulses that are of approximately

equal width. This effect actually is diminished significantly

because the equations involve integrals of the aperture
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fields. It has been demonstrated in earlier tables of admit-
tance values that the integrals of the aperture fields are
not very sensitive to the number of expansion pulses (above
a usually small minimum number). The result of this situa-~
tion is that very good solutions can be obtained with pulse
distributions that vary widely for different apertures of

the same cavity configuration. If there were reason to con-
centrate attention on one cavity region, the non-adjoining
aperture could be adequately treated with comparatively few
expansion pulses.

Aperture electric field distributions which have been
calculated for two different size, partitioned, two-port
cavities are presented in Figures 21 and 22. These cavities
have been created by adding annular disks to the outer con-
ductors of the two-port cavities of Figures 15 and 16 so
that the effects of partitioning such cavities can be ob-
served. The resulting aperture distributions are very fre-
quency dependent as the first transverse resonance fre-
quency is approached and for frequencies beycnd. A gquali-
tative idea of the aperture field variation with frequency
can be interpreted from the comparisons of measured and cal-
culated field components in Chapter VIII which are given for
a number of frequencies.

The input admittance at either port can be computed from

the approximation to the aperture electric field at that port.
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In Table 12 comparisons are presented for admittance values
calculated from solutions to integral equations and computed
from transmission line theory with susceptance corrections

from the Wavequide Handbook. This data again appears to

demonstrate that the integral equation approach is superior
to the transmission line approach when the aperture is small
enough that the singular behavior of the aperture field

caused by the discontinuity is seen over most of the aperture.
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TABLE 12.

a=c/2
e/

0.0010
0.0100
0.0500
0.1000
0.2000
0.4000
0.5000
2.6000
0.8000
0.9000
0.9945
1.1000

a=c/2
e/A

0.0010
0.0100
0.0500
0.1000
0.2000
0.4000
0.5000
0.6000
0.8000
0.9000
0.9945
1.1000

CALCULATED ADMITTANCE OF A PARTITIONED, TWO-PART
COAXIAL CAVITY (NORMALIZED BY THE INPUT WAVEGUIDE)

—_ ! ——
- 1 1 S
b = 2¢/3 d = Sc/6 x = 3¢/2 y = 3¢c/2

Wavequide Handbook

0.99834364 -
0.85913835 =~
0.24708957 -
0.19468650 +
0.33681097 -
0.21549346 +
0.96235858 -
0.12576944 +
0.58503247 +
0.06010651 +

Cutoff

j0.03646526
j0.30578823
j0.20829428
j0.15497574
30.26536484
30.06722641
j0.06022518
§0.43536054
j1.01100177
j0.77547372
Freg

Above Cutoff

b = 2¢/3

d = 5¢/6

Wavequide Handbook

0.99834625 -
0.85932100 -
0.24701063 =~
0.19266498 +
0.35572846 -~
0.15438273 +
1.00000000 +
0.20108709 +
0.46097070 +
0.06190716 +
Cutoff

30.03646544
§0.30592364
§0.21024318
§0.14812225
§0.23677548
§0.06244383
§0.59496446
§0.39082365
§1.23927333
§0.71737474

Preq

Above Cutoff

Integral Equation
0.99889305 - j0.03645737

0.85970885
0.24755160
0.19523825
0.33590023
0.21648982
0.95726980
0.124891¢68
0.59984037
0.05651798
0.52758674
0.94391508

x = 2¢

§0.30573056
$0.20801032
30.15561873
§0.26378041
§0.07016078
§0.06694721
30.44122015
31.02307863
30.79681264
36.67688686
30.03856458

X = C

Integral Egquation
0.99889565 - j0.03645841

0.85989129
0.24745830
0.19314166
0.35517085
0.15359618
1.00054745
0.20211057
0.47402267
0.06739482
0.60245035
0.23160684

+

+ + + + + + +

$0.30587505
30.21000502
40.14879100
§0.23466776
§0.06533893
j0.60669547
§0.39476634
41.24904843
j0.72441466
i5.48157554
30.48464206




CHAPTER VI

INTEGRAL EQUATION FOR A TRUNCATED COAXIAL INNER CONDUCTOR

A, Introduction

The discontinuities which are the subjects of the anay-
ses in the preceding chapters are all coaxial in nature. It
is demonstrated that, in theory, any combination of planar,
coaxial discontinuities can be treated by proper application
of one or more of the general equation forms developed in
Chapters II, IV and V. An additional type of discontinuity
is formed by truncating the center conductor of a coaxial
waveguide and it can be treated by a similar approach to
that used for the coaxial discontinuities. The analysis
for such a structure is presented in this chapter, and it
is subsequently demonstrated that the expressions which are
derived for the circular waveguide region are analogous to
those derived for the coaxial regions, noting that there
are no corresponding TEM terms. This fact facilitates the
derivation of intsgral equations for waveguides where the
previously-treated discontinuities and the truncated center

conductor are mixed.
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B. Expressions for Field Components

A coaxial waveguide with a truncated inner conductor is
depicted in Figure 23. The outer radius of the waveguide is
also reduced in the plane of the truncation to demonstrate
that other discontinuities can be treated simultaneously.
For Region 1 (z < s), the field component definitions of
Egs. (17)-(22) are appropriate. For the circular waveguide
region, (z > s), the field components must be derived from
an appropriate magnetic vector potential which is a solution
to Eq.(l). The axial component of magnetic vector potential
is sufficient to provide a complete field definition, as is
demonstrated for the coaxial case in Appendix A. The mag-
netic vector potential component is defined as the product

(no variation with ¢):
AS(p,2) = R°(p) Z(2) (87)

where the axial function, 2(z), which satisfies Eq.(2), has
the form

2(z) = ¢ eIk, 2 o QIk,Z (88)
1 2

and the radial function, Rc(p), is a solution of Eq.(3) and

has the form

c
R (p) = C3 Jo(kpp) + ¢4 No(kpp) (89)

The boundary condition that the field have a finite

value at p = 0 eliminates No(kpp) as a possible solution.
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A second boundary condition requires that the tangential
component (in this case, Ez) of the electric field be zero
at the inner surface of the wavequide (at p = ¢). The re-

sulting function is
RS (p) = c, J(A_p) (90)
3 70 n
where the An are the infinite set of kp which satisfy
Jo(knc) =0,n=1, 2, ... (91)

The eigenvalue representation for kz is now given by

Ay Y] 2 2

By = "k; = A , k3 > AL (92a)
/T2 2 2

By = =3 "AS - k5 RS S (92b)

The resulting expression for the magnetic vector potential is

L -]
c _ + =jB.2 - _jB_z
AZ(p,z) = nz_l(cn e ''n® + c e’"n%) I (2 0) . (93)
The field components for Region 2 can now be computed from

Egs.(11l), (12), and (13) operating on Eq.(93). The resulting

expressions are
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2. w_ ¢ ot -8B 2 oJBpZ
L E, 2 z B(-c, e 'n" + c_ Y{=2, 3, (A 0}
5 n=1
1] o .
B2 = - 18 7 2 - 8d)(ch e Bn® 4 T e3Bn?) 5 00 0)
z 2 2 n n
k2 n=1
2 v + jB_ 2z - JB z
H = - = J (c_ e ""n® + ¢ Y{=x_ 3, (x_ ;) }
¢ My 2p B n n "1'"n
The constants c; and c; are now redefined to give the field
expressions a more standard form:
2
-k
+ _ 2 .t
¢, = BB—'Cn (94a)
n
and kz
- 2 -
n
The field components are now given by
2 P + jB_z JB z
Ej = 2 -A (c e n" +C e ) 3, (A p) (95)
n=1
2
® A .
B2 =3 [ 22} e - ] o3t 5p0 0 (96)
n=l "n
k, o« =) . T
2 _ 2 n + -jB z _ .- ]B z A
Hy nznle;(cne n c, e ) I, (A p) . (97)

C. Definitions of Constants in Field Expressions
The procedure to obtain useful definitions for the un-

known constants of Egs.(95)-(97) employs similar orthogo- i
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i
i

nality properties to those of the method used in Chapter II.
The first step is to multiply both sides of Eq.(95) by
p Jl(Amp) and then integrate both sides over the interval

(0,c). This yields

€2
JOEQ p Jl()\mp) dp = (98)

c o . .
- + =jB_s - JjB s =

[0 pnzl Ap(Ch e 2'n% + ¢ e’ n%) 3, (0 0) I (A o) dp , m=l,2,...
Because of the orthogonality properties of the integral on
the right-hand side, Eq.(98) has zero value except when m = n.

The constants may now be defined by

+ -jB s - 3B s _ 1 € o
cn e n~ + cn e’"n" = = [ )]2 faEa P Jl(xnp) dp
-\ f p[JT, (A _p do
nj, 1'"n (99)
where the radial component of the electric field in the
aperture is defined by
o
ES, a<p<egc
Ei(o) =¢ @ . (100)
0 , 0<p<a
The normalization integral in Eg. (99) has the value:
o [€ [T (A0)1% do = -A c? 32 ¢) (101)
nly PLJ1ApP e n 2 1''n
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D. Enforce Continuity of Transverse Fields in the Aperture
An equation containing the integral of the unknown aper-
ture electric field is obtained by constraining the trans-
verse component of magnetic field to be continuous across
the aperture, i.e., Hé(p,s) = Hi(p,s). This yields
+ @7 IkyS - e

B, —— - B

+ e-ja s
0 n e 0 no 1n

n° - B; eIy Sy 4o
l "n dp

k ® ) . .
- n_z I 2 (ch efn® - o &3 g (0, beta,e). (102)
2 n=1 n
An integral equation appropriate for the geometry of Figure
23 is easily obtained from Eq. (102) if the waves incident on
the aperture from both directions are fully defined. As an

example, assume that the excitation traveling in the +z

direction in Region 1 consists of a TEM wave with amplitude
+

B,- The existence of only a TEM mode implies that all the
B; = 0. It is also assumed that the waveguide on the right-

hand side of the aperture is either infinitely long or termina-
ted in a matched load, either of which implies that all the

C; = 0., The resulting integral equation for the coaxial wave-
guide with a truncated inner conductor is, from Eq. (99),
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¥
i

-jk. s c {
28} & ; - 1 = f ED dp
1 1P ln; a
k ® c
+ ﬁl ) 12 f Eg d¢n do d°n(p)
1l n=1 anMn a do dp
k o c
=2 ) 3 22 J EZ p Jl(knp) dp] Jl(Anp) (103)
2 n=1 Bnc Jl(Anc) a j

E. Application to a One-Port Cavity

The geometry depicted in Figure 24 possesses two discon-
tinuities: the first, at z = s, is the now-familiar step-
discontinuity in the outer conductor of a coaxial waveguide:
and the second, at z = t, is the truncated center conductor

of a coaxial line. The two unknown aperture field distribu-

tions are obtained from solutions to a pair of coupled inte-
gral equations which are derived according to previously de-
termined procedures. It is convenient to define the field
components in Regions 1 and 2 with the expressions in Egs. (63)-
(65) with i = 1 and 2. The constants in these expressions are
defined in Egs.(71)-(73) where the notation for the weighted
integrals of the aperture fields retains the same meaning.

The field components for Region 3 are given by Egs(95)=-(97)
where the subscripts and superscripts which denote parameters
corresponding to a particular region are changed from 2 to 3.
The constants in Egs. (95)=-(97) are evaluated by application

of the boundary condition requiring zero tangential electric
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field on the plate at z = u. These constants, which are
analogous in form to those defined in Eq.(48), are given by
set3Bpt

c* fdzz 3, (A p) d (104)
n " _a 2 _. _ 2 a ? v1'%nP 0
jAnd Slan(u t) Jl(lnd) a

The first of the required pair of integral equations is given
by Eg.(78) with z = s. The second integral equation, which
results from the substitution of the proper expressions for

the constants into Eg.(102) with z = t, is quite similar to

Eqg. (81):
0= - 1 S [Ig cosk, (t-s) - Ié]
]Slnkz(t-s) n,e ln;
k, @ 1 2 1) dae
+ 5= ) — 5 [IZn cosa, (t-s) - IZn} 2n
2 n=1 jSanZn(t—S) GZnMZn dp
ky E ZcosB_(u-t) a, }
+ = EZ p J, (A _p) dp| Ty (A _p) .
Ny oot . - 2 2 I a 1'"n 1'"n
3 n=1 jSlan(u t) 4 Bn Jl(knd) a
(105)

where the xn are the solutions to
Jo(xnd) =0, n=1, 2, ...

and the Bn are defined by Eq.(92).

It is a straightforward procedure to combine the dis-
continuity depicted in Figure 23 with any or all of the
coaxial discontinuities illustrated in Figures 3 and 4 to

create an arbitrarily complex cavity structure. The equa-
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tion for the truncated center conductor would be included
where necessary to obtain a tractable set of integral equa-
f tions. A similar treatment of the junction of two circular
waveguides of differing radii can be accomplished with a

simple extension of the material presented in this chapter.

Such a configuration was not of interest during this inves-

tigation primarily because circular waveguides do not sup-

port the TEM mode.

. F. Numerical Solution Considerations
The numerical procedure employed to obtain solutions to
Egs.(103) and (104) is, in principle, the same technigue de-
scribed in Chapter III. The expansion for the aperture elec-
tric field defined by Egs.(55) and (56) is appropriate. The
resulting integral is easily evaluated to yield
fd ? c N Jrq+A/2

Py(p) J;(h p) dp= | E

J, (A _p) dp

-A/2
rq A/

= ? E .ot -5, 106)
=L x. [FoAnTq ofnTg?l ¢

g=1 9 Ay
where )
+
i = + A 2
. Tq = Tq /

= - 4/2
r rq /

The testing function set given by Eq. (61) is used to
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generate the N algebraic equations necessary to obtain a
solution for the aperture field. The two sets of algebraic
equations obtained from Egs.(78) and (105) are sufficient

to obtain solutions for both aperture electric fields when
the constants of Eq. (78) are defined. In Figures 25 and 26
are presented calculated aperture field distributions for the
coaxial-to~-circular waveguide junction of Figure 23 without
the step in the outer conductor and the one-port cavity of

Fiqure 24.

G. Susceptance of a Truncated Center Conductor

The lumped TEM susceptance introduced into a transmission
line when the coaxial center conductor is truncated can be
calculated by following the procedure described in Chapter II.
Once the aperture distribution is obtained, its integral can
be used to evaluate the voltage reflection coefficient through
Eq. (54) and the susceptance can then be computed with the aid
of Eq.(51) where the characteristic admittance (in the TEM
sense of the circular waveguide section, YZ, is equal to zero.

The resulting expression is

j_f. =1-T(s) | (107)
Y, 1+ T(s)

The expression on the right-hand side of Eg. (107) is the
definition of the normalized admittance at z = s expressed in

terms of the voltage reflection coefficient. For frequencies
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below the cutoff frequency for the first propagating mode in
the circular waveguide, the TEM admittance is imaginary. At
frequencies above cutoff for one or more circular waveguide
modes, a portion of the incident energy is converted to a
propagating mode(s) in the circular waveguide. Under the
latter circumstance, the admittance is complex. Whereas
previous susceptance expressions are generally applicable to
TEM waves incident from either direction, the expression in
Eq. (107) is only valid for a TEM wave incident from the
coaxial waveguide side of a truncated center conductor dis-
continuity. In Table 13 are presented TEM admittance values
calculated from solutions to integral equations for four
differenf ratios of outer coaxial radius to inner radius.

There is no corresponding expression in the Waveguide Hand-

book for comparison, although Marcuvitz does provide a sus-
ceptance expression for a coaxial-to-circular waveguide
junction where the inner conductor is also a circular wave-
guide. The b/} = 0.3827 frequency for each gecmetry is the
cutoff frequency for the TMOl mode in the circular waveguide.
As for the other planar discontinuities, the admittance has a
non-zero real part when power is converted to propagating
higher-order modes.

As mentioned in Chapter I, the coaxial-to-circular wave-

guide junction has been treated by a number of other investi-

- mg——
PO

gators. In Table 14 comparisons of calculated capacitance
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are presented for six junctions of varying size along with
measured values for three of the junctions. The integral

equation results are computed with 20 pulses across the

aperture and 30 series terms and with 50 pulses and 50
series terms. The two calculations give a qualitative feel
for the convergence of the integral equation approach. The
integral equation results compare extremely well with the
other values in the table and indicate that this approach

would be very useful when extreme accuracy is desired.
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TABLE 13.

b/X

0.0100
8.0500
0.1000
0.2000
0.3000
0.3s500
0.3600
0.3800
0.3827
.4000
.5000
.6000

o O o

b/

.0038
.0292
.0883
L1167
0.1750
0.2333
0.2917
0.3500
0.3617
0.3733
0.3827
0.4083

o o o o

(NORMALIZED BY THE COAXIAL WAVEGUIDE)

|

a=10m b= 60 m b/ as=10n
0.00191089 + j0.01744352 0.0050 0.00040563
0.00191390 + 3§0.08771871 0.0250 0.00040576
0.00192371 + 30.17870852 0.0500 0.00040616
0.00197098 + 30.38887331 0.1000 0.00040787
0.00210462 + 30.71558373 0.2000 0.00041627
0.00231081 + j1.067%90249 0.2500 0.00042511
0.00240087 + 31.20129638 0.3000 0.00044172
0.00291225 + 31.86998604 0.3500 0.0004854¢6
0.00348897 + 32.55084881 3.3750 0.00057774
1.31789521 + 11.45873287 0.3800 0.00065154
1.09293073 + 3j0.44577374 0.3827 0.00090172
0.77651831 + j0.31616103 3.4000 2.47153062
= 0.001521 b = 0.0028 B/ a=3m

0.00019634 + 3C.01256151 0.0050 0.00514131
0.00019640 +~ j0.06296377 0.0250 0.90514312
0.00019660 + 30.126933355 0.0500 0.00514884
0.00019744 + 30.26241962 0.1000 0.00517258
0.00019907 + 30.41843924 0.2000 0.00528542
0.00020206 + 30.61781907 0.2500 0.00539763
0.00020806 + 30.92164639 0.3000 0.00559469
0.00022628 + j1.64172801 0.3500 0.00605477
0.00023668 + j2.00888777 0.3750 0.00682852
0.00025969%9 + 32.78448222 0.3800 0.00731500
0.00048351 + 79.88536282 0.3827 0.00841109
2.38129436 + 30.58725311 0.4000 0.89278293

107

MW&%“ N

-

-

-

+ + +

+ + + +

CALCULATED ADMITTANCE OF COAXIAL-TO-CIRCULAR WAVEGUIDE JUNCTIONS

= 310m

50.01046953
30.05243913
50.10543323
-0.215737¢2
30.47874712
30.65986369
-0.92837452
11.49467253
32.50384587
§3.27713693
35.78165555
71.29941802

b=30m

40.0073833C
40.03697297
70.07423933
30.15092167
§0.32521859
50.43577291
40.58463831
50.84802125
§1.19680288
41.39072306
31.79451644
31.22679813
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CHAPTER VII

ADMITTANCE MEASUREMENTS FOR TWO-PORT COQAXIAL CAVITIES

A. Introduction

During the course of the present investigation, two sets
of coaxial cavities were constructed and a number of measure-
ments of the electromagnetic properties of the cavities were
performed. The term "sets of cavities" is used because a
number of interchangeable parts were constructed for each
cavity which allows it to be configured as a simple or
partitioned cavity and, for one set, as either a one~ or two-
port cavity. Descriptions of the cavities and interesting de~
tails of their construction are given in Appendix E. It was
found, as anticipated, that the voltage standing wave ratio
(VSWR) on the waveguide feeding a one-port cavity was far too
large to measure accurately. Consequently, the admittance
measurements presented in this chapter are only for the two-
port configuration with one port being excited by an RF

generator and a matched load placed at the other port.

B. Measurement Procedure and Cavity Configuration
A schematic representation of the apparatus used in per-

forming the admittance measurements is given in Figure 27.
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The primary instrument used is a General Radio (now GenRad)
50 ohm precision slotted line. Three quantities were
measured on the slotted line which together provided the
necessary data for calculating the admittance of the cavity
at the discontinuity where the input waveguide joined the
cavity proper (z = s in Figure 14). The first quantity was
the VSWR on the transmission line between the cavity and
the source generator. The second quantity was the location
of a minimum of the voltage on the slotted line. The third
was the location of a minimum of the voltage when an electri-
cal short was placed at the location of the cavity input.
The procedures for measuring this data and the subsequent
calculations of the admittance are described very well in a
number of books and in particular, Ref.[25] which was con-
sulted during this investigation. The results presented in
the next section for each frequency are the averages of cal-
culations made using all the possible combinations of
measured standing wave minima. At almost all frequencies,
this total was nine separate calculations. All measured
values are normalized by 20 millimhos.

The input admittance was measured for three cavity con-
figurations:

l. Simple cavity, no partition

2. Partitioned cavity, aperture diameter = 2.540 cm

3., Partitioned cavity, aperture diameter = 8.006 cm.
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The dimensions of the various cavity sections are given in
Appendix E. During the measurements only an air dielectric
was used in the cavities. The output waveguide, which is a
section of 50-ohm air line, was terminated in a 50-ohm load
at a point 13.472 cm beyond the output port of the cavity.
The admittance was measured at 50 MHz intervals over a band-
width which differed slightly for each cavity. The fre-
quency intervals measured for each cavity configuration are

given below.

Configuration No. Frequency Range
1 300 - 1700 MHz
2 400 - 2000 MHz
3 400 - 1700 MHz

The cutoff frequency for the first higher-order mode (TMOl)
in the larger section of waveguide is 1325 MHz, a point which

is covered by all three measurement intervals.

C. Presentation of Results

The real and imaginary parts of the measured admittance
for each configuration are graphically presented in Figures
28-30. Also plotted on each graph are the real and imaginary
parts of the admittance calculated from solutions to the
appropriate integral equations. In Figures 31-33, the ad-

mittances computed from transmission line theory with
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susceptance corrections are plotted together with the pre-
viously plotted curves. The effects of the size of the ap-
erture in the partition are illustrated in Figure 34 where
the calculated values of admittance for the two cases are
presented together.

1 The transmission line theory values agree gquite well
i with the other results for frequencies well below the ™,
3 cutoff in the larger cavity section; however, the results of
this procedure begin to display significant errors as the
cutoff.frequency is approached. The admittances computed
from the integral equation solutions display excellent agree-~

ment with measured results at almost all sampled frequencies.

It is very difficult to distinguish any differences in the

two for frequencies below 1900 MHz. It is probable that
measurement error was becoming significant at frequencies
above 1900 MHz. This contention is supported by the results
shown in Tables 15, 16 and 17 where the mean and standard de-
viation for the measurements at each frequency are presented

along with the admittance computed from solutions to integral

equations. The standard deviations of the real and imaginary

 § parts of the admittance are calculated from the expression

2 -2
‘ = ?Y'N(y)
Std Dev of Y, = n=1 D

N-1
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where

Y, = set of N measurement results

Y = mean of N measurement results

The standard deviations for both the real and imaginary parts
of the measured values grow substantially larger as the fre-
quency increases beyond 1900 MHz. The standard deviations
for both parts of the admittance are also large near peaks
in the admittance which correspond to axial resonances of
the particular cavity (length equal to odd multiple of
one-half wavelength). Three of the four peaks on the ad-
mittance curve for the simple two-port cavity can be
identified easily. The axial length of the cavity is equal
to one-half the free-space wavelength at 1000 MHz which is
the location of the first peak. The second peak occurs at
1325 MHz which is the first transverse resonance frequency.
The peak near 1650 MHz is also immediately identifiable,
since it represents the axial resonance of the first higher-
order mode. The fourth peak occurs at 2000 MHz where the
axial length of the cavity is equal to one free-space wave-
length. All of these resonances are characterized by a
zero crossing of the imaginary part of the admittance with
a steep negative slope.

The behavior of the admittance curves for the parti-

tioned cavities becomes more difficult to interpret. The
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one-half wavelength, resonance peak for the total axial
length of the cavity occurs near 600 MHz for both cavities.
The nature of this peak is verified by its occurance in
Figure 34 where the admittance of an unpartitioned cavity

of the same length is presented. Except for the transverse
resonance peak which occurs at 1325 MHz for all structures,
the introduction of the partitions significantly changes the
admittance response of the two-port cavity above the pri-
mary TEM axial resonance. The most prominent feature of the
admitténce curves for the partitioned cavities is a very

large, sharp peak between 1100 and 1200 MHz. The peak

appears to be directly related to the existence of the
partition and its aperture. The value of the peak and its
position vary as the size of the aperture is changed, while
the other features of the admittance curve change very little.
The exact physical origin of this resonance-like peak has

not been explained but it is almost certainly an axial
resonance since it is also described by the transmission line
theory calculations. It is also interesting to note in
Figure 35 the almost precise agreement of the admittance for
the two partitioned cavities between the transverse resonance
frequency (1325 MHz) and 1800 MHz. In this region, the par-
tition has a definite effect, but the size of the aperture

appears to have little influence.
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Freq
MHZ

300
350
400
450
500
550
600
650
700
750
800
850
900
950
1000
1050
1100
1150
1200
1250
1300
1350
1400
1450
1500
1550
1600
1650

TABLE 15. CALCULATED AND MEASURED ADMITTANCE OF A
TWO-PORT COAXIAL CAVITY .1
Intagral Eq. Mean of Measured Standard Deviation

Calculation Results

Real Imag Real Imag Real Imag
0.0835 -0.1102 0.0589 -0.1164 0.0000 0.0000
0.0696 -0.0563 0.0656 -0.0630 0.0000 0.0000
0.0614 -0.0076 0.0578 -0.0188 0.0000 0.0041
0.0569 0.0379 0.0513 0.0315 0.0000 0.0029
0.0552 0.0821 0.0497 0.0712 0.0022 0.0044
0.0560 0.1265 0.0546 0.0887 0.0041 0.0088
0.0596 0.1726 0.0550 0.1349 0.0007 0.0075
0.0665 0.2222 0.0628 0.1917 0.0001 0.0037
0.0785 0.2774 0.0677 0.2501 0.0009 0.0089
0.0986 0.3415 0.0816 0.3253 0.0009 0.0122
0.1339 0.4189 0.1133 0.3993 0.0023 0.0080
0.2003 0.5150 0.2047 0.4961 0.0059 0.0120
0.3382 0.6278 0.3266 0.5670 0.0091 0.0250
0.6370 0.6872 0.6197 0.6744 0.0076 0.0097
1.0325 0.3635 1.0218 0.3036 0.0096 0.0065
0.8430 -0.1719 0.7745 ~-0.2245 0.0109 0.0104
0.4723 ~0.2242 0.4431 -0.2276 0.0012 0.0049
0.2889 -0.1084 0.2706 =-0.1172 0.0004 0.0055
0.2164 0.0223 0.1924 0.0186 0.0001 0.0083
0.2195 0.1676 0.2201 -0.0348 0.0138 0.2584
0.4694 0.3747 0.5048 0.3545 0.0029 0.0069
0.2015 -0.4217 0.1410 ~0.4259 0.0010 0.0097
0.0069 0.0073 0.0088 0.0275 0.0009 0.0061
0.0014 0.1750 0.0053 0.1892 0.0005 0.0068
0.0021 0.3093 0.0065 0.2467 0.0009 0.00062
0.0104 0.4704 0.0137 0.3974 0.0008 0.0070 .
0.0747 0.7450 0.0688 0.6659 0.0005 0.0072
0.7550 1.1541 0.6050 1.1892 0.0089 g.0121
0.9587 -0.0166 0.8626 -0.0561 0.0021 0.0070




TABLE 16. CALCULATED AND MEASURED ADMITTANCE OF A PARTITIONED,
TWO-PORT CAVITY - SMALL APERTURE

Freq Integral Eq. Mean of Measured Standard Deviation
MHz Calculation Results
Raal Imag Real Imag Real Imag

400 0.1214 0.2097 0.1080 0.2163 0.0003 0.0061

450 0.2177 0.3186 0.1937 0.3445 0.0047 0.0384

500 0.5189 0.3565 0.4668 0.3815 0.0011 0.0120

! 550 0.6174 -0.1778 0.5174  -0.2553 0.0026 0.0080

’ 600 0.2199 -0.2130 0.1608 -0.2097 0.0003 0.0052
650 0.0937 =0.0790 0.0704 -0.0833 0.0005 0.0053

| 700 0.0527 0.0228 0.0435 0.0173 0.0000 0.0149

! 750 0.0360 0.1046 0.0287 0.1186 0.0012 0.0183
g 800 0.0284 0.1794 0.0257 0.1559 0.0005 0.0735
850 0.0253 0.2565 0.0227 0.2346 0.0008 0.0066

900 0.0252 0.3454 0.0227 0.3387 0.0013 0.0108

950 0.0287 0.4624 0.0283 0.4648 0.0007 0.0l100

1000 0.0395 0.6466 0.0422 0.6737 0.0021 0.0130

' 1050 0.0793 1.0451 0.0908 1.0666 0.0080 0.0855
1100 0.6530 3.2300 1.3069 4.8789 0.0729 0.2019

1150 0.1574 ~1.6821 0.1239 -1.3361 0.0126 0.1010

1200 0.0111 -0.4278 0.0134 -0.3652 0.0007 0.0090

1250 0.0026 -0.0541 0.0065 -0.0148 0.0012 0.0061

1300 0.0320 0.3348 0.0408 0.3958 0.0008 0.0066

1350 0.1488 -0.5198 0.1056 -0.4640 0.0010 0.0117

1400 0.0104 0.0087 0.0111 0.0060 0.0010 0.0059

1450 0.0034 0.1760 0.0061 0.1735 0.0006 0.0067

1500 0.0038 0.3101 0.0067 0.3042 0.0005 0.0064

1550 0.0094 0.4669 0.0109 0.4602 0.0008 0.0076

1600 0.0462 0.7258 0.0308 0.7138 0.0007 0.0080

4 1650 0.5148 1.3673 0.4281 1.4438 0.0072 0.0169
- 1700 1.1483 =0.1735 0.9656 -0.2007 0.0076 0.0053
1750 0.4774 0.0913 0.3951 0.1521 0.0008 0.0060

1800 0.5003 0.3702 0.4458 0.4568 0.0052 0.0129

1850 0.9779  0.4549 l.1128 0.4568 0.0122 0.0071

1900 0.8825 ~0.5633 0.4745 -0.3327 0.0095 0.0271

' 1950 0.1796 -0.3126 0.5640 -0.4516 0.0592 0.1067
2 2000 0.0407 0.0151 0.1912 -0.3896 0.0232 0.1763
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TABLE 17. CALCULATED AND MEASURED ADMITTANCE OF A PARTITIONED, "
TWO-PORT CAVITY - LARGE APERTURE %

freq Integral Eq. Mean of Measured Standard Deviation
MH2 Calculation Results
Real Imag Real Imag Real Imag ‘

400 0.0828 0.1786 0.0631 0.2179 0.0002 0.0062
450 0.1194 0.2703 0.0759 0.1292 0.0007 0.0359
500 0.2178 0.3925 0.1719 0.4055 0.0006 0.0048
550 0.5350 0.4829 0.4575 0.4419 0.0057 0.0012
600 0.8247 ~0.1037 0.7436 -0,2050 0.0013 0.0012
650 0.3197 ~-0.2802 0.2075 -0.2756 0.0011 0.0103
700 0.1348 -0.1311 0.1154 -0.1219 0.0005 0.0165
750 0.0757 -0.0148 0.0439 0.0259 0.0013 0.0225
800 0.0521 0.0753 0.0388 0.1015 0.0006 0.0770
850 0.0415 0.1542 0.0358 0.1423 0.0007 0.0064
900 0.0375 0.2326 0.0291 0.2326 0.0003 0.0126
950 0.0381 0.3199 0.0305 0.3121 0.0002 0.0091
1000 0.0444 0.4307 0.0269 0.4367 0.0010 0.0097
1050 0.0624 0.5986 0.0505 0.5757 0.0026 0.0542
1100 0.1254 0.9411 0.1503 0.9552 0.0037 0.0126
1150 0.8239 2.4444 0.9953 2.6990 0.2599 0.3148
1200 0.3237 -1.5965 0.2454 -1,3653 0.0065 0.0391
1250 0.0133 -0.3077 0.0088 -0.2577 0.0013 0.0074
1300 0.0215 0.2384 0.0206 0.2754 0.0003 0.0076
1350 0.1716 -0.5995 0.0909 -0.5370 0.0019 0.0110
1400 0.0083 -0.0344 0.0094 -0.0370 0.0002 0.0049
1450 0.0026 0.1455 0.0772 0.4004 0.0026 0.3960
1500 0.0026 0.2815 0.6.55 0.2691 0.0006 0.0053
1550 0.0039 0.4244 0.0089 0.4189 0.0005 0.0084
1600 0.0241 0.6780 0.0196 0.6566 0.0004 0.0091
1650 0.3426 1.3212 0.2680 1,3458 0.0049 0.0158
1700 1.2635 ~-0.2282 0.9497 -0,3228 0.0153 0.0066
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CHAPTER VIII

INTERNAL FIELD MEASUREMENTS IN COAXIAL CAVITIES

A. Introduction

In Chapter II it is demonstrated that the rotational
symmetry of the coaxial cavities under investigation limits
the number of field components excited within the cavities.
With only the Ep, Ez and H¢ components present inside a
cavity, it is possible to construct probes which do not
couple to multiple field components and to provide access
to the cavity interiors without seriously perturbing the
field within the cavity. These factors have made possible
an extensive program of interior field measurements on all
possible confiqurations of the two sets of coaxial cavities
described in Appendix E. The field distributions measured
within the cavities are compared to distributions computed
from solutions to the appropriate integral equations for
the same geometries. The measured results serve, therefore,
both as a direct observation of the electromagnetic response

of a given cavity and as a rigorous test of the validity of

the integral egquation technique.
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B. Procedures for Measurements Inside Cavity End Plates
It is desirable to perform field measurements in such
a manner that the transmission line from the probe to the
sensing instrumentation does not interact with the subject
field. This may be effectively accomplished by placing

the probe on the surface of a highly-conducting boundary

and allowing the transmission line to exit through and be
shielded by the conductor. Since the cavities under investi-
gation were constructed entirely of brass, several options
for providing shielded access to the cavity interior were
available. The options were to measure at the inner surfaces
of the end plates or on the walls of the inner or outer
coaxial conductors. Boundary conditions constrain Ep to be
zero on the end plate surfaces and Ez to be zero on the
walls of the ccaxial conductors, therefore, it was de-
sirable to choose a combination of measurement locations
which would sample all field components.
The center conductor for the smaller cavity set is

less than one centimeter in diameter which renders it an
impractical probe location. Difficulty of machining argued
against cutting slots in the outer coaxial wall. Con-

: versely, it was relatively simple to cut slots in the cavity

end plates for probe access. These slots were required to

be along a radial line in order to provide no interference

[ with the axially-directed currents flowing through the
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Y cavity. These radial slots allowed the measurement of both

the Ez and the H_ components on the front and rear end

9
. plates of the cavities with the front of the cavity being

defined as the end which contains the port being excited.
b Radial slots were also cut in the end plates of the

larger set of coaxial cavities. 1In addition, the center

conductor is large enough to accomodate a moveable probe,
SO it was possible to cut an axial slot in this conductor

which extended the entire length of the cavity and beyond.

; The axial slot in the center conductor allowed the measure-

ment of the Ep and H, components.

$
The field probes were designed for operation over a

conducting screen and their size was chosen to achieve an
acceptable balance between providing a measureable signal
and imposing minimal pertubation of the field being
measured. The construction of the probes is briefly de-
scribed in Appendix F. The lead from the probe in use was

connected to one input port (test) of a network analyzer.

The reference input port of the network analyzer was
connected to the RF generator which provided the excita-
tion for the cavity. The network analyzer, configured in
this manner, performed as a vector voltmeter displaying
relative amplitude and phase as a function of position as
the probe was moved along the slot. A schematic diagram

of the measurement instrumentation is presented in Figure 3¢,
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Field component measurements were made for six dif-
ferent configurations of the smaller set of cavities and
for three configurations of the larger set. As indicated
earlier, only two field components were measured in the
smaller set of cavities while all three components were
measured in the larger set. In the following sections of

this chapter, graphical presentations are given for se-

lected measured field distributions for each of the nine
cavity configurations. 1In each graph, the field distri-
bution calculated from an integral equation solution is
given for comparison. The calculated distributions have
been obtained assuming an excitation resulting from the
application of a time-varying, one volt potential be-
tween the coaxial conductors (See Eq.30). The amplitude
distributions in each graph have been normalized twice;
the first normalization is by a factor composed of geo-
metrical and excitation constants which cancels the units
and the second is the division of all the calculated
values by the largest value. The peak value of the measured
amplitudes is then set equal to the corresponding calcula-
ted value at the same radial or axial location. The re-
mainder of the measured values are then divided by this
factor. The calculated phase is plotted relative to an

assumed phase of zero degrees at the first point. The
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measured phase is set equal to the calculated phase at the
same point where the amplitudes are made to be egual and
the other measured phase points are plotted relative to

this value.

C. Field Interior to Simple One-Port Cavity

Measurements of the interior field components were
performed for two sizes of one-port, coaxial cavities.
The Ez and H@ components were measured on both cavities
and the Eo component was also measured on the larger
cavity. The measurements on the smaller cavity were per-
formed for the freguency band 400 - 2000 MHz at 100 MHz
intervals. For the larger cavity, the frequency band was
400 - 1200 MHz at 100 MHz intervals. There was great
difficilty in obtaining useful measurements of Ez on the
rear plate of the smaller cavity. This was the only
measurement set during the entire investigation which pro-
duced such difficulty. The problem was based on the ex-
treme mismatch between the input transmission line and
the cavity. Essentially all the incident energy was re-
flected back toward the generator and it was not possible
to safely produce enough power from the generator to yield
meaningful field distributions on the rear plate. The
measurements made on the front end-plates showed far more

variation with frequency than the values measured on the
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rear plates. The latter values were almost frequency inde-
pendent. Representative distributions of Ez and Ho on the
front and rear end plates of a simple one-port, coaxial
cavity are presented in Figures 37 - 40. The two letters,
LC, under the small picture of the cavity indicate that the
particular measurement was performed on the larger cavity

set. Such a distinction, with SC indicating the smaller

cavity set, is made for the one-port cavities. All two-port

cavity measurements were made on the smaller cavity set.

D. Field Interior to Simple Two-Port Cavity
A two-port cavity configuration could only be con-
structed from the smaller cavity set, therefore only one set
of such measurements was made. The output waveguide section
was terminated with a 50-ohm lcad in the same manner as for
the admittance measurements of Chapter VII. The fregquency
range of these measurements was 400 to 2000 MHz in 100 MHz
steps. There was no problem in feeding energy into this
cavity configuration and the measurements were made with no
difficulty. Distributions of E, and H@ on the front and rear N
end plates of a simple, two-port coaxial cavity are presented ;

in Figures 41 - 44. The magentic field measurements show some

interesting variations which are predicted quite accurately by

the integral equation calculations
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E. Field Interior to Partitioned, One-Port Cavity
Partitioned, one~port cavities were constructed from both
sets of cavities. Two partitions for each set with different
size apertures were made, thus it was possible to form two
variations of each one-port cavity. The frequency range for

the smaller set of cavities was 400 - 2000 MHz at 100 MH:z

intervals. The field components in the larger set were

measured from 400 - 1200 MHz at 100 MHz intervals with a few é
additional measurements at 1300 and 1400 MHz. Distribtuions

of Ez and H$ on the front and rear end plates of several

partitioned, one-port cavity structures are presented in

Figures 45 - 52. The distributions do not differ markedly

from those of the simple, one-port cavity.

F. Field Interior to Partitioned, Two-Port Cavity

It was only possible to construct two-port, partitioned
cavities from the smaller set of cavities, but by making two
partitions with different size apertures, two variations of
such a cavity were formed. The fregquency range of these
measurements was 400 - 2000 MHz at 100 MHz intervals. Dis-

tributions of Ez and H, on the end plates of both cavity con-

¢
figurations are presented in Figures 53 - 68. The amplitude
and phase curves in many of these figures have a wide variety

of shapes that are predicted very accurately by the integral

equation solutions.
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G. Measurements Along Center Conductor of One-Port Cavity
The most interesting measurements in terms of variety
of waveforms were made at the surface of the inner conductor
of the larger cavity set. The transverse field in a coaxial
waveguide has its greatest intensity at the surface of the
inner conductor and this fact appeared to enhance the gquali-
ty of the measurements made there. The spatial range over
which the measurements were made was greater than for the
end-plate measurements which added to the possibility of in-
teresting field variations. The measurements were made for
the simple, one-port cavity and the partitioned, one-port
cavity with two sizes of apertures. The size of the aper-
ture in a particular figure is designated by the letters SA

for small and LA for large immediately following the LC des-

ignation for the larger cavity set. Distributions of E_ and
Hrb are presented in Figures 69 - 78 for all three cavity
configurations. The integral equation solutions do an excel-

lent job of predicting the amplitude and phase in all cases.

H. Evaluation of Measured and Calculated Results :
The primary objective of the field-measurement program
was to provide verification for the accuracy and demonstrate
the utility of the integral equation approach. Sufficient
measurements were made to provide a very good description of

the field in the various cavities in the frequency range
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which extends from below to above the cutoff frequency for
the first higher-order mode in the cavity section. Space

restrictions prevent the presentation of more than a rep-

resentative sample of the entire body of measurements.

A small number of the measurements display evidence of
excessive noise and the strong probability of unwanted fre-
quency harmonics. It was discovered during the investiga-
tion that the generator plug-~in used in the 400 - 1000 MHz
band produced substantial frequency harmonics until it had
warmed up for an extensive period. Most of the measurements
where this effect was suspected were repeated, but several
of the measurement sets have unexplained variations from the
calculated values below 1000 MHz but have very good agree-
ment above 1000 MHz.

The great majority of the measurements display very
good to excellent agreement with the calculated field dis-
tributions throughout the measured frequency band. Many
times the agreement follows rather complex variations of
both amplitude and phase. The overall impact of the com-
parisons is a very strong verification that the integral
equation approach provides accurate solutions for the aper- ,
ture fields and, consequently, all other field components .

in the cavities that have been treated during this investi-

gation.




oTew

]
: B AMP - 4(3 2+ .0479 . o - .!S64 . ¢ - .3345 .,
" soe V333w « = .8195
_ Lae =180
E FRONT PLRTE }
£ —_ I
; / e
§.‘ ; v s
g 0.8+ Lc a
; Wl
. 3
-]
a x‘ re 2
! L&‘ 0.6 -
) = =
3 g :--f ---------- “0-9-0-8-0 O OO0V O ] g
: . o
o L
f-:[: 0.¢ - ;E-
s » r-60
w z
g
<
& 0.24 AMP PHASE F:‘
g MEAS 2= o000 roa
= CAL — e
-
g 0.0 ~ — -+ v -180
0.0 0.2 0.4 0.6 0.8 1.0
-] b RAQIUS NORMALIZED 8Y ¢ ¢
FIGURE 37 MERSURED AND CALCULATED Z COMPONENT OF ELECTRIC FIELD 900 M2

PEAK AMP - 172 a =+ .0426 v o - .13%0 > c - .4751 »

e 3750 w x * 7285

_ 10 . 180
° RERR PLATE
]
§ : 120
5 0.84 Lc I a 1
= :
o ]
8 60 z |
S 0.6 o
g i ~
a o
g o.cﬁ g
L~ re0 o
w =
e g
§ 0.24 - g
4

f =
g 0.0 v v - ~— -180

0.0 0.2 _ 0.4 0.8 a.e 1.0

H a b RADIUS NORMAL[ZED BY ¢ ¢

) FIGURE 38 MEASURED AND CALCULATED Z COMPONENT OF ELECTRIC FIELOD 800 MMZ

|

|

138




PEAK AMP - 410 o .0426 . o - .1390 > c * 4751
s L3790 x = ,7285 »
3 1.0 180
3 FRONT PLATE
g ==
) P10,
s 0.84 LC 4
3 5
z AP PHASE o
: MEARS e« 00O 9 =z
o 0.64 \ CALL ——  ----- i
g . &
g o
3 0.4+ g
] R
« z
T —
<
5 0. g
§ 2 m-120 8
—
i
i 0.0 T ¥ <y v -180
0.0 0.2 0.4 0.6 0.8 1.0
- b RADIUS NORMALIZED BY ¢ <
FIGURE 39 MEASURED AND CRLCULATED o COMPONENT OF MAGNETIC FIELD 800 MHZ
PEAK AMP - 3 742 g+ 0479 » b =« .|564 » ¢ - .5345 .
» o 33T m « = 8195 »
"': 1.3 - 180
a g REAR PLATE
] = ]
3 = -
2 .84 (P a
~N
N g
a 60 E
a z
g 0.8 9 : o
f R P aaaas.a.. o g
2 A
g 0.4 g
P PHASE el
; eso b
.24 \ AL — -----
§ =120 g
=
-
% 0.0 v . -~ -100
0.0 0.2 0.4 0.8 0.8 1.0
e b RAQIUS NORMAL [ZED BY ¢ €
900 MMZ

FIGURE 40 MEASURED AND CALCULRTED o COMPONENT OF MAGNETIC FIELD

139




ACAK AP - N -1 g~ 0155 » B " oy i TS .8310 »
. .- .2000 m « - 7550 »
= ap——— —1 ]
3 !
: i anp PHASE FRONT PLATE
- i —————
8 | MERS w e s 000 ——'_1_—-—?
< [ e — et
a o s
> 5
a =
s z
0.8 o
§ -1 0060000000V TNABGTT660 000, é
o
= Sao
§ 0.4 §
b - g
- =
B ., <
3 ¢
=
'
g 0.0 A= v v e -1®
0.0 0.2 0.4 Q.6 0.8
ab RAOIUS NORMAL 1 ZED B8Y ¢
FIGURE 4! MEASURED AND CALCULARTED A COH”MT oF ELECTIRIC FIEws 1500 M2

peax AP - 303 o - Q072 B° 0166 » ¢ = -247B
, = 42086 « - 3823
RERR PLATE
PHASE __E——'—"L-—
—______.—-—"'-'=-‘—;-
« 092 =

Fiop NORMAL 1 ZED By v-osLOGIL al

aPLITUDE OF €

ap——

T

9.4 0.8 0.8
RADIUS Mlm BY ¢

AND CALCULATED Z COMPONENT OF ELECTRIC F1

140




Sty @ . 220 a - .0l4S . o - 033 . < - .49% .
o 2143 m = 7047 .
IR o 5 180
- o]
"i H '. -]
7 Q .Q 20
7 T8 \#:\. o g
- . "o |
= : 9
= ™ : Q. L
2 - : °0°°°'9v ------ @ E
- 3.6
- . w
2 _ %‘
£ " : 0
§ . ; FRONT PLATE o
. —_
S 0.4+ S
Qu
[}
by re g
z AMP E
5 0.4 .« =
§ e -120 g
: °°‘°°°Moo°.°
: r —d v y -100
0.8 0.2 0.4 .6 0.8 1.0
ab RADIUS NORMALIZED BY ¢ <
FIGURE 43 MECASURED AND CALCULATED o COMPONENT OF MAGNETIC FIELD 1400 M4Z
PEAK AMP - | S4S a =~ .0l65» o= .0379: ¢ - .5664 »
»o L1875 m « = .8053 »
- i 180
? REAR PLATE
2 AMP PHASE
% MEAS » » coo __r—
z AL — e b0
i 0.09 d
~ [}
3 &
- =
o 60 _
8 —
o 0.8 w
g . 2
2 o .
g 041 z
o 80 LJ
~ =
= €
; 0.24 o 2
3 =
‘ £ L.l , , -
*0 e 0.2 0.4 a.8 0.8 1.0
ab RAGIUS NORMALIZED BY ¢ ¢
FIGURE 44 MERSURED ANO CALCULATED o COMPONENT OF MAGNETIC FIELO 1600 MZ
¥ .
1 141




s
E 567w P . 257 5+ 0176 . o - .0405 . c - .6016
E s LITBS e g+ .3720 . x - .3554 2 4 - .4894 »
PR r ........ PO v 180
3 : ! !
S i P
i b Co ! AP PHASE FME 2,
' 5 284 1 ———— | o i
) i { ! MERS w » » Qoo e M| ] :
, - © CAL  —— e &
1 [~ : beo B
= =z
- -
Tioa.64 | -
: £ . 2
i X o e
< ]
:
ooy 60 o
! - -
s < x
,§ 0.2 4 coo 120 4
—
3
2 B . . -
0.0 0.2 0.4 0.6 0.8 1.0
ab RACIUS NORMALIZED BY ¢ ¢
k- FIGURE 45 MEASURED AND CALCULATED Z COMPONENT OF ELECTRIC FIELD 1700 MMZ
3
PEAX AMP -(S5.749 a = .0473 » b = .|564 » c = .5345 »
»u 3333w g~ .22 » x= . BI9S\ gy = .5538 >
1.8 s 180
B R :
3 z
2 FRONT PLATE
po] 120
5 0.8 3
s :
a =
iy : W Pt fw =
_H_ 0.6 4 : MERS » » » 000 “
g : CAL —— ...
N — . 2 +
S 0.4 % ‘
d ;
- I=~60 w
- £
-
29
§ > iz &
- Ll
pr}
g 0.0 + r v v -180
0.0 0.2 9.4 0.8 0.8 1.0
9 b RAQIUS NORMALIZED BY ¢ ¢

FIGURE 46 MEASURED AND CALCULATED Z COMPONENT OF ELECTRIC FIELD 900 MeZ

142




e Y

PEAK AP - 026 o~ .0207 » b~ .0476: c - .7077 »
v+ .1S00 = g .0847 » x 1.0063 s - .5758

_ 10 100
3 REAR PLATE
2
§ 120
S 0.04 n
> 3
a =
S oo oy
f . §
: b,
g o4q g
P AP re g
o -
E . % m S
o -_ [}
§ 0 27 L1200 &
[=4
pr)
g 0.0 . — ~ v * -180
0.0 0.2 0.4 0.6 0.8 1.0
ab RADIUS NORMALIZED BY ¢ <
FIGURE 47 MEASURED ANO CALCULATED Z COMPONENT OF ELECTRIC FIELD 2000 Mz
PEAK AMP - 019 o= .0479 » b = .1%64 » c - .5349 »
»e 3333 - g = .2222» x = .8195» g4 - .5538.»
_ Lo . 180
s REAR PLATE
2 —_ ]
) =] .
3 0.04 a
~ (ad
> &
@ )
a e z
E'_‘ 0.8 4 o
g N
= ]
g o :
- =
u -
s g
.24
§ ° 120 g
fant
o}
2 2.0 v v + v -100
0.0 0.2 .4 0.8 0.8 1.0
s 5 RADIUS NORMALIZED BY ¢ c
FIGURE 48 MEASURED ANC CALCULATED Z COMPONENT OF ELECTRIC FIELD 900 ™2

143




PERK AMP - 2,733 o .0692 . o= .2209. ¢=-.770.
»» 23080 - g .0, «-1,18%8. - .7999.

5 8 ™
3
3
20
Z’ 2.4 He
S 5
>
- 8
2 - =
S 0.4
g | ¢
o 0.49 %
-l
o b0
[ 79 >
: :
= < o
§ 0.2 r'm g
=
-l
Qe
E oo v r -y e -100
0.0 0.2 0.4 0.8 0.9 1.0
a b RADIUS NORMALIZED BY ¢ ¢

FIGURE 49 MEASURED AND CALCULATED o COMPONENT OF MAGNETIC FIELD 1300 MM2

PERK AMP - 2,733 a = .0473 » b - .I1564 2 ¢ - .5345 >
»+ 3333 = g - .2222 » x = BI85 4 - ,5538 .

5 W0 180
~
a
2
3 120
2 .84 a
N
N 3
a -6 E
8 -
SIS -
g . ¢

0.4 g
g ™ <
=] P60 W
z H
= -
-3 0.2 4
§ o120 g
=
-
: 0.0 - v gy -y -1

0.0 0.2 0.4 o 0.0 1.0
L ® RADIUS NORMALIZED 8Y ¢

FIGURE SO MEASURED ANC CALCULATED ¢ COMPONENT OF MRGNETIC FIELD 900 M2

144




T——-—“

PEAK AMP - 2,733 o« .0426 v b+ 1390 2 c - .47S1 »
»» L3790 m g - .0883 » x = 7285, oy - .4922 »

;
3
It s M REAR PLATE e
4 3 AMP PHASE
| 2 MAS w s o000
) -
| 7 CAL — oo i,
5 2 .84 A
‘ R o
| S g
3 >
f - oo =
| @ z
a z
| S 0.6+ o
; N
g cpeccance-e 0'OOQQ‘Q‘O'Q'Q‘QOoocﬁ'e'e'ﬂ'o'ooovﬂﬂ’o"e‘"“'o g
3 0.4 4 ;
= -80 (J
c E
N €
; 0.2 1 120 g
=]
=
r - — -100
% >0 0.2 0.4 0.6 0.8 1.0
-} 5 RADIUS NORMAL[ZED BY ¢ <

FIGURE 5! MEASURED ANO CALCULATED o COMPONENT OF MAGNETIC FIELD 800 MHZ

PEAK AMP = 2.733 o= .0320> b-=.1042>» ¢ = .3563 >

» » = .5000 m g - .1481 » x = 5464 2 4 -~ .3692 »
: I 1.0 t80
< REAR PLATE
3 2 AMP PHASE T
» . § MERS P Q00 -
3 ] CALEL —— ----- ‘ 120
. -] [72]
l\.l 0.8 4 (%}
s 3 %
. © -
] a ™ z
Q -
E 0.8 o
f B 00 00G9-0-0-8 0000000000000 0-00:00----bl g ~
§ :
; g 0.4 9 z
4 =y 80
- z
T [
-
8 0.24
§ met20 g
( =
g 0.0 \ \ A — -;J — -180 f
0.0 0.2 0.4 2.6 0.8 1.0 P
o b RADIUS NORMALIZED BY c ¢ !

FIGURE S2 MEASURED AND CALCULATED o COMPONENT OF MAGNETIC FIELD 600 MMz

| 145




PEAK AP « (085 o~ .0l45 v b~ . 0333, c - .495¢ .
vo 214w g = .0893 » <= 7044 » 4 - .4031 »

_ Lo 180
] F
g ane PHASE RONT PLATE
g MEAS w » w» 200 T
37 AL — -e -2
o 0.84 fd
N 1
o =
: Tz
] <
N 06 W
{
| 2
t g 0.4« g
! ; ,-60
w =
«
S 0.24 E“:‘
§ o120
=
]
g 0.0 v N - -180
0.0 .2 a.4 a.& a.8 1.0
ab RAQIUS NORMALIZED BY ¢ ¢

FIGURE 53 MEASURED ANO CALCULATED 7 COMPONENT OF ELECTRIC FIELD 1400 M2

[ PEAK AMP - 066 @~ .0176 » b =.0405: <c = .5016 »
» o+ L1765 m g = 0720 » x - .8554 . 4 - .4894 .

- Lo 180
P
. g AMp PHASE FRONT PLATE
Q MEAS " soo =L —
1 g -y S L&
o 0.804 Gl
~ o
. 2
-]
a e 2z
& 0.8 4 hand
g d
| L i
| : :
; ; d 0.4 4 2
H .: »-80 l;l
‘ G i =
s g
°
§ 024 °°¢‘-¢°°°‘°0°°“060-00° 00O D ... L-120 b
3 -
I p}
z 0.0 v — - u -180
0.0 0.2 0.4 0.8 Q.8 1.0
e b RADIUS NORMAL IZED BY ¢ )
H FIGURE S4 MEASURED AND CALCULATED Z COMPONENT OF ELECTRIC FIELD 1700 MMZ

; 146




e e — e —

PCAK AMP -  0S6 a=.0103x o=-.0238x ¢ - .3539 .,
» = .3000 = g = . 1334 x«<-.S032> g4 - .2879>

_ 1o 180

"\; AP PHASE FRONT PLATE

2 MAS =aw ocoo ==

=] CALL ——  eee- i

;c 0.0+ t..l"

. 2

-]

§ 60 z

S 0.6+ -

% 0000900000000t 000000LGL .- =0 g

p A

d .44 §

o -6 1y

[ >

d -
—

B 0.249 ;

§ --120

=

P ]

; Q.0 ~y— Y v —— -180

e.0 Q.2 Q4 0.6 0.8 1.0
ab RADIUS NORMALIZED 8Y ¢ c
FIGURE 5SS MEASURED AND CALCULATED Z COMPONENT OF ELECTRIC FIELD 1000 MHZ

PEAK AMP - 0SB a=.0186 » b=~ .0429» ¢ - .6370 »
»» .1B67 o g = .2402 » x = .3057 » gy - .5182 »

_ 1o 180
Fi P
g AMp PHASE RONT PLATE
) é MEAS w m n scoo ==
< el —  eee-- P12
o 0.89 o
~ lad
. 3
@
a re 2
o =
N 0.8 - |
3 :
g 0.44 § ]
- = |
. £
pus -
L o i
§ 6.2 iz &
=
g voos -
9.0 e v Y — P— F"n
9.0 0.2 Q.4 Q.6 c.8 1.0
b RACIUS NORMAL[ZED BY ¢ ¢

FIGURE S6 MEASURED ANO CALCULATED Z COMPONENT OF ELECTRIC FIELO 1800 M2

147

B 0

A Y, S R A



PEAK AMP - 0S7 o= .012¢4 . - .0286 ., c - .4246 .
» = .2500 » g -~ .0508 » « - .85038 » 4 - .3495 .

148

- 1.0 180
g .. S o PHASE REAR PLATE
& | || TS mxw 00 L |
Y .84 b
> 5
a =
3 N
N 0.6 fad
g | L 2
2 4
T 0.4+ 179000000000 00000009000I0C000COV------ <
a a
& =
et -
s g
3 e
§ 0.2 4 o £
—
pn
g 0.0 — ™ g T ~180
0.0 0.2 0.4 0.6 0.8 1.0
ab RAGIUS NORMAL (ZED BY ¢ <
FIGURE S7 MEASURED ANO CALCULATED Z COMPONENT OF ELECTRIC FIELD 1200 MMZ
PEAK AMP - 067 o - .0134 o = .0310 » ¢ = .4600
»» L2308 m g - .0S50 » x = .854l » 4y - .3743
_ ta 180
o REAR PLATE.
2
§ }m
£ a.84 n
> 800 0-0BQe0000800080006000 E
&
5 .
8 z
N 0.8 4 -
g . i
I e}
3“1 z
- Bl
o -
- <
0.2 g
§ 1 r‘-lm [
band
§ 0.0 v r -180
0.0 0.2 0.4 0.8 0.8 1.0
ab RADIUS NORMALIZED BY ¢ <
FIGURE S8 MERMSURED AND CALCULATED Z COMPONENT OF ELECTRIC FIELD 1300 MMZ




PEAK AMP - (54 o=~ 0124 > b= .0286 > <c < .4246 »
» = .2500 g = .80l » x - .6038 g .3455
~ 180
3
2
§ AP PHASE REAR PLATE 20
9 0.4 = <
3 MRS +aa 000 =T | §
- CALC S
& -
=} =z
‘I:J‘ (T -
N, -
§ P 3 =0 g
2 o
)
3 :
b --60
v =
{od —
= T
pu
2+ g
§ % o120 &
=
o
g 0.0 T e -180
0.0 0.2 0.4 0.6 0.8 1.0
ab RAOIUS NORMALIZED BY ¢ ¢
FIGURE S MERSURED AND CALCULATED Z COMPONENT OF ELECTRIC FIELD 1200 M2
PEAK AMP - 0S6 o~ .0178» b=-.0405S s ¢ -~ .5016
» = L7685 = g = .2268 » x - 8954 2 g - .4894
_ 1.0 180
2 I
3 a°o°°‘°°°°'°°°°'°'nn°'°'°'o'9'"°'
2 &
3 5 M2,
o 0.8+ . a
s ; g
e ‘,’° 3
: ','b 60 E
d 9 =
& .64 S o
g . g
- B
- P PHASE REAR PLATE %
§ MERS = 000 _—1_r— a
- AL —— - P80
< =
s g
o &
=
g 0.0 -

6.0
ab

0.4 0.8 0.8
RADIUS NORMALIZED BY ¢

FIGURE 60 MEASURED AND CALCULATED Z COMPONENT OF ELECTRIC FIELD

149




-

-

PERK AMP -~ .S548 a-.0l14 b=~ .0262> <c - .3893.

vo 277 m g - 0466 x - .S535, - .3167

»

3 1.0 180
3 FRONT PLATE
2 U s e P
§ S e
g oo i 2
N e
b
: - =
S o -
g °MV°°’°°°°’°V°°‘OVOtre'cvo-e-ova-o-oov ______ +0 ?
]
g [ RL g
= B
x £
B 0.2+ d
§ bot2o &
=9
o
: . - h ; 100
0.0 0.2 0.4 0.8 0.8 1.0
ab RADIUS NORMAL[ZED BY ¢ ¢
FIGURE 61 MEASURED AND CALCULATED o COMPONENT OF MAGNETIC FIELD 1100 MMZ
PEAK AMP - [, 242 a=.0145 2 & = 0333 2 ¢ - ,4954 >
vo 2143 m g = .0593 » x - .7044 » 4y - .4031 .
5 1.0 g 180
= L9 —_— T
g
3 120
& 0.0 Q
> %
> =
. ., 3
§ 064 =
] w
: L 3
2 g
3 &
s [ £
z puns
5 0 g
§ e-120 &
st
£ .0 - -
a.0 Q0.2 q.4 .8 0.8 1.0 ‘o
ab RAOTUS NORMALIZED 8Y ¢ c
FIGURE 62 MEASURED ANO CALCULATED o COMPONENT OF MAGNETIC FIELD 1400 MM2

150




PEAK AMP - 548 a~.0093: o5~ .0214: ¢ - .3185.
»+ 3333 m g = 12001 » - .4529 » 4 - .2531

° 1.8 100
a amp PHASE FRONT PLATE
§ MEAS & w 000 = —
S CAL —— . 120
s 0.04 v
~N (%]
> g
H o 3
z
2 o z
g L ¥
2, 2
3 ™ £
= I
: :
B 0.2 d
: =t
=
i 222223 c00eevee
0.0 - v — .
0.0 0.2 0.4 0.6 0.8 I.O‘”
ab RACIUS NORMAL[ZED BY ¢ ¢
FIGURE 63 MEASURED ANO CALCULATED o COMPONENT OF MAGNETIC FIELD 900 MWZ
PEAK AMP - 862 g~ . 0145 b« .0333» ¢ - .4954
»v L2143 - g~ .1868 1 x = 7044 » 4 - 4030 .
5 1.0 180
3 - PHASE FRONT PLATE
g MEAS ®x e o000 =
l° — eeee- 120 n
s 0.84 .
~ ol
S 5
a hea E
g ol z
£ , &
a 0449 g
a
d -6
- >
. =
0.2+ tod
§ L'la =
=
§ “2acagg,......
9.0 n - - v -180
0.0 0.2 0.4 0.8 0.8 1.0
ab RAQIUS NORMALIZED BY ¢ ¢
FIGURE 64 MEASURED ANO CALCULATED o COMPONENT OF MAGNETIC FIELD 1400 M™Z

181




PEAK AMP - S48 o~ .0134, po-.0310» ¢ - .3600 »
»o L2308 » g - .0550 » « - .6541 » gy = .3743 .

I i

l s 0 180
k § P PHASE REAR PLATE
g g MERS s xs o000 = |
;' .;.‘ a8 e e i ;
| s 5 |
% - 60 E
! g 0.6 4 o
F g =0 g
?‘ ‘ {é
ij g 0.4 &
*_ : g
2
§ %0 r v v -_— -180
0.0 a.2 0.4 0.6 a.0 1.0
ab RADIUS NORMALIZED BY ¢ ¢

FIGURE 65 MEASURED AND CALCULATED o COMPONENT OF MAGNETIC FIELD 1300 MHZ

PEAK AMP - 548 o= .0145 2 b= .,0333 . c - .4954 .
» = 2143 m g 0593 s x = .7044 > 4 - .4031 »

I 1.0 180
E AMP PHASE REAR PLATE
§ MEAS w nw 000 ==L
2 . — ceess o 120
3 o8 CALC g
N &
5 o 3
g 0.6 4 -
I SPREEEL oouoqq ko g -
o‘?.o o
g O.CT ’-_9 g
}4 - - k80
o N >
z 2, S
s Q.QJ Qg g
g “Oﬂoouooﬂoo ...... =-120
i £ N
§ 0.0 v T v T ~180
S.0 0.2 0.4 0.6 Q.8 1.0
! s ® RACIUS NORMALIZED 8Y ¢ ¢
3 FIGURE 66 MERSURED AND CALCULATED o COMPONENT OF MAGNETIC FIELD 1400 MHZ
1
3
) 152




PEAK AMP - 548 o - 0134 s b - .0310 » c - .4600 »

»e 2308 g = .1735 . o« « 6541 2 oy - .3743 .

2 1.0 180
§ anp PHASE REAR PLATE
- "G asx o0 =
1 cALC 120
-] Y
g 0.0 (od
~N o
S g
; =6&0 E
Q —
H .64 »
: . §
3
3 0.49 g
o P80 (.
- 2
- <
0.29 d
§ et120 x
-
pet
2 0.8 + ~y v -t80
0.0 0.2 0.4 a.6 0.8 1.0
e b RAQIUS NORMARL{ZED BY ¢ ¢
FIGURE 67 MERASURED AND CALCULATED o COMPONENT OF MAGNETIC FIELD 1300 MHZ
PEAK AMP - 548 a =014 b= .0333 1, c - .495¢ >
e 2143 m g - .1868 » x - .7044 2 4 - .4031 »
3 1.0 — 180
3 4009..400'“0"
8
120
é 0.0 4 ! u‘:‘
3 %
>
= REAR PLATE | E
g o L -
£ L 3
A
a 0.4 3
d ho g
& g
: G
0.2+
§ F-!NE
=
§ 0.0 v =¥ ™ — T -180
0.0 0.2 0.4 0.6 0.8 1.8
ab RAQIUS NORMAL[ZED BY ¢ c
FIGURE 68 MERSURED AND CALCULATED o COMPONENT OF MAGNETIC FIELD 1400 MwZ

153

ia




PERK AMP - [.362 o= .0838 s b=-.208.: c=-.7126

»» ,2500 m x =1,0927 »

_ e 180
Q
8 MERS wwn Qoo
-l —— caae b
T e CALC 20
> 7
a 3
g B
SN 0.8 :
g $-o---osle-o L ; e@e > 0-9-00 (0 g

» . 9 : o
3 0.4 R £
& ) P g
w " E
s g

0.2 4
§ 120 &
=
g 0.0 Td‘ia gD :* -180
0.0 1.2

0.2 0.4 0.8 0.8 1.a
AXIAL OISTANCE NORMAL {ZED BY LENGTH OF CAVITY
FIGURE 69 MERSURED AND CALCULATED » COMPONENT OF ELECTRIC FIELD 1200 MHZ

PEAK AMP - | 836 qa =~ .0473 » b~ . 1S64 » c - .5345 »
»e 3333 m g = .0768 » x = 8195 y = .5538 »

~ 1.0 180

-]

~ CENTER

3 AMP  PHASE

g % MEAS www 000 L2

'\{ ad LT CAL — oo a

= 2

a » r“ 5

& 0 -

g , . ¥

g aed %

- Bl

- -

) <

a 31 L-mg

£ . S SO S
%0 1a

0.2 0.4 0.8 0.8 1.0
AXIM. OISTANCE NORMAL[ZED 8Y LENGTH OF CRVITY
FIGURE 70 MEASURED ANQ CALCULATED , COMPONENT OF CLECTRIC FIELD 900 MH2

154




PERK AMP - 2,507 Q= .0586 » b~ .I9I1 . ¢ - .B5532 »
ve 2727 m g = .0938 » «-1.0017 » 4 - .6768 .
_ La . . SuwoTTee 180
a ? . 1 -]
3 e Prese || o
2 MERS wxs ocoo °
pr] . : =120
L o0 <
= 5
a " =1
a rea z
A oed -
£ , &
A gad b
g 0.4 ‘ g
« Fe
- est
I 5
P
§ * h-120 ¢
[—4
]
g 0.0 S -190
9.0 Q.2 0.4 0.6 0.8 1.0 1.2
AXIAL CISTANCE NORMAL[ZED BY LENGTH OF CAVITY
FIGURE 71 MEASURED ANO CRLCULATED , COMPONENT OF £LECTRIC FIELD 1100 MeZ
PEAK AMP - 1,430 a=-.0426 > b= .1380 » <c - .4751 »
»= 370 m g - .1975 » x = .728% » gy = 4922 »
- La . , 180
3 AP PHASE
§ MERS wuw - X-X-)
< e — 120
5 0.0 4 8
> g
s .-.. m s
= o
z
g 0.0 4 :
g ;
g er ro {
Pl i
g 0.4 4 g
: v &
e =
-} CENTER <
{ § 24 -ﬁ—jLc A F-m ‘&‘
’ = i
” £ 0.0 . A - e \J -180
3 .0 6.2 %4 a.8 o.8 1.0 1.2
1 AXIAL DISTANCE NORMALIZED BY LENGTH OF CAVITY
FIGURE 72 MEASURED ANO CALCULATED , COMPONENT OF ELECTRIC FIELD 800 MMZ

155




3
:
PEAK AMP - | 363 o .0839» b~ .2085: ¢ - .7126 >
» o 2500 m 9 = .2963 » x °1.0927 » ¢ - .7384 .
1.0 A a-a-a-a-a.a-a-a-a 4 4 180
o ; @ ;
~ . .
a X ;
2 AMP  PHASE | :_
= : . L
Ty R 000 o -
> t[LC LA L— 3 4 §
5 e “ 3
a : \ 3 =z
3 § 0.6 < :
g "oy -3
g fowows $ ) oo o £
- 7
a
0.
g 49 ™ A g
[ - » 60
& [ . =
& g
[ o
§ ] o120 ®
[
e
z 0.0 — - ™ - ™ ~100
6.0 0.2 0.4 0.6 c.8 1.0 1.2
AXIAL OISTANCE NORMAL IZED BY LENGTH OF CAVITY
FIGURE 73 MEASURED AND CALCULATED o COMPONENT OF ELECTRIC FIELD 1200 MHZ
PERK AMP - 7S o= .0639» b .2085> ¢~ .7126>
» o 2500 m x *1,0927 »
1.0 To—o— oy oo 100
: AMP  PHASE
"MEAS waw 000 120

0.0+ PCALL ——— cene

8

0.6 4

2 0.07

H a
]
RELATIVE PHASE ANGLE IN DEGREES

APLITUDE OF H-FICLD NORMALIZED BY V/Zwoni0Gib/a)

.2e
. -120
%0 v v T Y A -180
0.0 0.2 0.4 .8 0.8 1.0 1.2
AX[AL DISTANCE NORMALIZED BY LENGTH OF CAVITY
FIGURE 74 MEASURED AND CALCULATED o COMPONENT OF MRGNETIC FIELD 1200 M2

156




PEAK AMP - 768 a-.0479 » b~ .15B4 ¢ - .5345 »

» = 3333 L0768 »  x - .8195 .5538

5 0 190

3 CENTER

§ [CCTSA L E

F = — : L P

E 1 0.8« . (ad

N : A g

> :

5 o S

g 0.64 ‘:o : w

g ; . 2

' 3

g : 1

o 60 o
! - AMP  PHASE >
‘ z MEAS wum o000 T

S 024 cAL — ;d

§ -120

=

o}

: 0.0 v ' -— v 2y -180

0.0 0.2 0.4 0.6 0.8 1.0 1.2

AX[AL OISTANCE NORMALIZED BY LENGTH OF CAVITY
FIGURE 7S MEASURED ANO CALCULATED o COMPONENT OF MAGNETIC FIELD 900 MZ

PEAK AMP - 98] a=.0986 » b= .1911 v c - 8532,

» 0 Q77 m g = .0938 » x -1.0017 » g - .67B8
{.8 . * : 180

°
3
2
7 L120
: s [ =z
g e o
g |, ¥
a (XP g
d a
1 by %0 o
z -
§ o0 . 2 __J__I"" s ~ -180

8.0 0.2 1.2
AxIAL DISTME MRMLIZED 8y LMTH oF CEVITY

FIGURE 78 MERSURED AND CALCULATED o COMPONENT OF MAGNETIC FIELD 1100 MMZ

157

.y




PEFRK AMP - 768 o= .0426 » b= .1390., <c = .4751 »
»* 3750 m g« 1975 2 o« - 7285, g4 - .4922 »

1.0 > >ou- 180
; : : !
: AP PHASE ; A !
. MERS o wan Qoo :
CAL — - -120

0.8

.
(-]
RELATIVE PHASE ANGLE IN OEGRLES

0.‘1

APLITUDE OF H-FIELD NORNAL IZED BY V/2nasl06ib/a)

{
0.4 ]\
¢
=60 i

1 CENTER
7 029 |LC TRl ke-120 :
] L i
%0 — — v r v -180 !

a0 1.0 t.2

.2 0.4 0.6 0.8
AX{AL OISTANCE NORMALIZED 8Y LENGTH OF CAVITY
FIGURE 77 MERSURED AND CALCULATED ¢ COMPONENT OF MAGNETIC FIELD 800 MHZ

PERK AMP - 763 = .063 s be-.208 . c-.7126. ;
» o ,2500 m g .2963 » x =1,0927 . y ° .7384 . i

5 10 100 i
3 ::
) 2 AP PHASE
-g j MERS wus - X-X-] CENTER 120 "
§M]Re — e T g
> —_—
H o &
a z
o o84 o
- b
g 1 og----- TO g i
: a
g 0.4 4 : ¢
: L
e o “ s
z : P~
: =
b G -
g -120 E
E
ﬁ a0 vo e —— o pos -100
0.0 6.2 0.4 0.6 0.8 1.0 1.2
Ax[AL OISTANCE NORMALIZED BY LENGTH OF CAVITY
FIGURE 78 MEASURED AND CALCULATED o COMPONENT OF MAGNETIC FIELD 1200 MMZ
158




CHAPTER IX

CONCLUSIONS

The primary objective of this investigation has been
to develop a proven and practical technique for determin-
ing the electromagnetic properties of a set of planar dis-
continuities in coaxial waveguides. It is demonstrated
early in this report that a knowledge of the transverse
electric field distribution in the plane of the discon-
tinuity (or discontinuities) is sufficient to characterize
all electromagnetic properties of the structure. According-
ly, the bulk of the analysis has dealt with the derivation
of tractable integral equations which can be solved to ob-
tain these desired aperture field distributions. The
technique for deriving such equations has proved to be
quite general and has been easily extended to the treat-
ment of coupled discontinuities. The general approach has
also been applied to the related problem of the discontinuity
occuring at the junction of a coaxial and circular waveguide
where the coaxial center conductor is truncated.

A significant outcome of this effort is that any of the

coaxial junctions, whether single or one of several forming a
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complex structure, can be treated through the application of
one general equation form. Use of such a general form is
frequently cumbersome and experience has shown that three
somewhat less general equation forms are more practical.

The first of these general forms treats isolated discontinu-
ities, the rcecond treats discontinuities which are coupled
to one other discontinuity, and the third treats discontinu-
ities which are coupled to two other discontinuities, one on
either side. The general equation form for the truncated
coaxial center conductor may be similarly structured with an
obvious limitation on the types of discontinuities to which
this discontinuity may be simultaneously coupled.

The integral eguations developed during this investi-
gation have proved to be quite amenable to a straightforward
numerical solution technigue. The choice of an expancsion
function set for the aperture fields which allows analytic
evaluation of the integrals significantly reduces the number
of machine operations required and thus reduces the effect
of this unavoidable source of error. Another very favorable
factor is that the primary electromagnetic quantities of
interest, e.g., admittance and internal field components,
are computed from the integrals of the aperture fields, and
integration is an operation which tends to reduce the effects
of many distribution errors rather than enhance them.

A significant amount of effort during this investigation
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was devoted to experimental measurements designed to verify
the accuracy of the integral equation formulation and the
numerical solution techniques. The comparisons between
measured and calculated admittance values for three cavity

structures demonstrated extremely good agreement. Signi-

ficant differences between measured and calculated values
appeared only at the highest frequencies measured and it is
very probable that these differences are the result of
experimental error. It is quite interesting to observe the
exceptional agreement of the admittance calculated from
transmission line theory with susceptance corrections from

the Waveguide Handbook at lower frequencies, and then to ob-

serve the fairly rapid breakdown of this method as the fre-
quency approaches the cutoff for the first higher-order mode.
The measurements of internal field components for nine
different cavity structures and subsequent comparisons with
calculated distributions has provided very impressive veri-
fication of the ability of the analytical technique to per-
form such calculations. There is not exact agreement for
every measurement, but there is strong evidence that all
such disagreements result from either instrumentation or
experimental judgement errors. There are no cavity con-
figurations where there is not exceptional agreement between
measured and calculated field distributions for a majority

of the frequencies sampled. The field distributions them-

161




M e e N

selves provide an interesting study. There is generally
little variation in the field distributions except near the
transverse resonance frequencies. There is very little
variation even at this frequency for measurements made at
the rear end-plates of the one-port cavities. Measurements
made on the end-plates of the two-port cavities generally
display a gradual phase variation while the only phase varia-
tions observed for one-port cavity measurements are abrupt
180 degree shifts. 1If the primary goal of this effort had
been to perform a rigorous chacterization of several cavity
structures, a substantial amount of additional data could
have been generated and interesting comparisons drawn between
field and admittance measurements over the freguency band.
However, the amount of data obtained is more than adequate
to verify the capability of the integral equation apprcach.
The descriptive term "practical", as applied in the
first sentence of this chapter, can be interpreted to mean
either useful or nnt excessively complicated to use, or,
more likely, a given individual's combination of the two.
A few suggested applications for the results of this investi-
gation are given in Chapter I but this list does not emphasi:ze
possible microwave circuit applications. The demonstrations
of the accuracy of the technique indicate possible appli-
cations in a large area of waveguide design problems where

the expressions in the Waveguide Handbook have been used in
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the past. The integral equation technique has given evidence

of being more accurate for susceptance calculations than the

expressions in the Waveguide Handbook for apertures that are

small compared to the largest radial dimension. Examples
presented in this report indicate that the accuracy of the
aperture field solutions and, thus, the admittance calcula-
tions can be improved by increasing the number of expansion
pulses used up to an, as yet, undetermined number. In-
creasing the number of series terms alone appears to have a
less direct effect on convergence, but a larger number of
pulses does require a larger number of series terms to achieve
convergence. There is very likely a set of coaxial wave-
guide problems where either the requirements for extreme
accuracy or extended bandwidth make the subject approach
extremely appropriate. None of the publications listed in
the Bibliography offer the means for calculating the admit-
tance of coaxial discontinuities when higher-order modes are
capable of propagation. The method of Wexler, Ref.[22],
which can treat higher-order modes, could be modified to
treat coaxial geometries; however, it is very cumbersome to
treat more than a few such modes. It is the hope of the
authors that the existence of this technique will play a role

in developing useful applications for which it is well suited.
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APPENDIX A
COMPLETENESS OF FIELD DERIVED FROM A MAGNETIC VECTOR POTENTIAL

FOR A ROTATIONALLY SYMMETRIC WAVEGUIDE

All planar discontinuities in the coaxial waveguides con-

sidered in the present investigation are surfaces which sup-

port a transversely-directed electric current. The existence
of such current components implies that a field description
derived exclusively from a magnetic vector potential with
only an axial component might not be complete. It is known
that a field description which consists of the linear com-
bination of all possible TEM, TM, and TE modes in a cylindri-
cal waveguide is complete. In the present investigation,

the TEM and TM modes are included so it remains to be deter-
mined whether or not there is possibly a necessary TE mode
contribution to the field.

Within a cylindrical waveguide, all TE-mode field ccm-
ponents can be derived from the axial component of an elec-
tric vector potential. The electric vector potential must
satisfy the wave equation and for a coaxial region the general

form is (note that the m = 0 term is not included)

jmé - -
| 2mn 2.n(2) e = () (A-1)

N~ 8

F_(o0,0,2) = ]
z m=- n
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where the axially-varying function Z(z) is a solution of the

harmonic equation

2 = -
—_— * kz Z(z) =0 (A-2)

and Emn represents a set of solutions of Bessel's equation of
order m. The form of Emn is dependent upon the requirement
that the tangential component of the transverse electric field
vanish at the walls of the waveguide. For a rotationally-
symmetric waveguide with symmetric excitation, m must be zero

and Eq. (A-1l) becomes

L on n(z) En(c) . (A=3)

e~ 8
o
N

F_(c,2) =
z n

The field components derived from this electric vector

potential are

£ = - % 7x (2F )
o a dz_(p)
= [ 32z (z2) -2 (A-4)
n=1 € n do
Bo= -5 % [k%F + V(7:2F)]
J k2 z 2
. azpz 82Fz
= -j %5 [k“2F, + 6 + 2 —=] (A=3)
k 3poz 32

For the field composed of TEM and TM modes to be incom-
plete, the p-directed current on the transverse surface must

generate a field component which could be derived only from
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an axially directed electric vector potential. A ¢-inde-

pendent, p-directed electric current generates only a o
component of magnetic vector potential, AC, and the field

derived from Ao is given by

E = -5 ‘-"7 [k26AD + 7(7+BA )]
k
= -5 9 k25 5 31 9 8yl 3 -
= sz (k%A + 6 555 35(0B )} + 2 33{5 55D} (A-6)
and
»_l ~
H m onAp
3A
=_-14s_0 -
= ua = - (A=7)

It should be noted that the scalar quantity AD is not a
solution to the wave equation and, therefore, is not useful
in obtaining a solution for the field inside a waveguide.

It is useful to note that that the field components described

by Egs. (A-6) and (A-7) are precisely the same as those ob-

taired from a ¢-independent, axially directed component of

magnetic vector potential, Az. Furthermore, neither of the

field components described by Egs. (A-4) and (A-5) has a vec- s
tor component that is common to the same field component of

Egs. (A-6) and (A-7). Therefore, there is no contribution to

the field by a postulated Fz, SO none is required for a com-

plete field description.
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APPENDIX B

PROCEDURE TO IMPROVE CONVERGENCE RATE OF BESSEL FUNCTION SERIES

An often productive procedure to increase the convergence
! rate of a given series consists of the termwise subtraction
of a second series having a known sum and whose higher-order

terms approach and eventually become equal to the corres-

ponding terms of the first series. The sum of the initial
series is then computed by adding the known sum of the second
series to the series of difference terms. To illustrate the
proceduie, assume that the sum F of the following series is de-

sired:
F= ) f_ . (B-1)

Next assume that there exists a second series with a known

sum G |
G = z g (B-Z)

| whose individual terms have the following property

[
o

lim (fn - g.)) (B=3)

n
n-+o©

If both series are convergent, then their sum or difference
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is convergent, and Eq.{(B-l) may be expressed
F= ] (f - g,) + G . (B-4)
n=1
The difference series converges much more rapidly than either
of the individual series. The rate of convergence is changed

from a dependence upon how rapidly the magnitude of fn
approaches zero for increasing n to a function of how rapidly

the individual fn approaches the value of the corresponding

9n°
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APPENDIX C

ASYMPTOTIC FORMS FOR EIGENFUNCTION EXPANSIONS OF FIELD

COMPONENTS IN COAXIAL AND CIRCULAR WAVEGUIDES

A. Introduction

In order to apply the procedure described in Appendix B
to the Bessel function series appearing in the definitions of
the field components in coaxial and circular waveguides, the
behavior of the series elements must be determined for in-
creasing n. The roots of Bessel functions of the first and

second kinds and of the function

¢n(o) = NO(Yna)JO(YnD) - Jo(Yna)NO(YnQ) (C-1)

which is frequently obtained for coaxial geometries (with

inner radius a), are increasing functions of n; i.e.,

th

root of the

Yn+1 > Yn for n+l > n, where Yn denotes the n

n+
particular function. Since the value of Yn increases rapidly
with n, the large argument forms of the Bessel functions

become applicable. The following forms are used:

[2

T
Io0Vn?) oo V,;;—E cos(y, 0 = 7) (C-2a)
n
N, (Y, 0) 2 _ sin(y o - O
0''n?) nee [TV D YnP T 3 (C-2b)
n
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[ 2 3n
Jl(‘{n,o) g F‘-{:E COS(‘(np - r) {(C=2¢c) J

sinly_p - 2) (c-2d)

Nl(ynp) — T

B. Asymptotic Form for H¢ in Coaxial Waveguide

With the assumption of no variation with ¢, the trans-
verse component of magnetic field in a coaxial waveguide is
given by a positive and a negative traveling TEM~mode wave

and an infinite sum of higher-order mode terms:

~jkz jkz ® : .
+ e - e k 1 + _=ja_z - Joa_z, d4¢
H = B —— - B — . — z -_(B e n - B e n ) n
¢ T 0 ne N ey %y B n T

where ¢n and & are defined by Egs.(20) and (21), respec-

n
tively. 1In this exercise, interest is limited to the higher-
order mode terms which make up the infinite series. For a
coaxial region between two discontinuities located at z = s

and t, t > g8, the constants are defined

tja_t b
te~°n - I Eg o 9% g (C-1)
jZSinan(t-s) M h do

= L 4

where the aperture electric field, Eg, is defined by Eqg. (31)
and Mi is defined by Eq.(36). The expression for the total

TM contribution to the field is given by

H " = — | Ej p _ndp n ., (C-4)

9 - ‘ ad - p
n=1 jslnan(t s) unMn h dpo do

™ K ? cosan(t-z) Ib ° asé
n L
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The aperture electric field may be expanded in a set of N
Pulses as defined by Egs.(54) and (55). The integral is

then evaluated to obtain

w cosa_(t-z) N _ ]
Hy'= % f —— D 5 | LBy (o xD) - o ()] 4%y
n=1 jSlnan(t°S) anMn g=1 J dp
(C=5)
where r; and r; are defined by Eq. (61). The expression may
be rearranged to the form
N w a (t-z) 8 (rl) - & (r.) d¢ ]
yT™ - k E E cosa, n rq n rqﬁ n
® M 219 |n=1 jsina_(t-s) o M2 de ,
n nn

Attention will now be directed toward the e¢xpression within

the braces which is represented by Rn(p):

+ -
¢ (r ) = ¢ _(r_ ) 4o
R (p) = 2S04 dp“ . (C-6)

It is the expression given by Eq. (C-6) which determines the
asymptotic behavicr of the terms in the infinite series of
Eg. (C-5). The elements of Eg.(C-6) are expanded in Bessel
functions through the use of the definition for Mﬁ and the
following

d(bn(o)
- YNy (v a)Jy (v e) - JO(Yna)Nl(YnO)] (C=7)




+ - + +
¢n(rq) ¢n(rq) = (No(Yna)Jo(anq) - JO(Yna)NO(anq)]

[NO(Yna)JO(anq) - JO(Yna)NO(anq)]. (C-8)

Substitution of the Bessel function forms into Eg. (C=-6)

yields the following expression:

R (p) = “Yn (N (v a)J) (vpe) = J,(y a)N, (v 2)]
2 2
2 2
n\ [N (y a)Jl(Y b) - Jo(Yna)Nl(an)] - =5

J

=

{[No(Yna)JO(an;) - JO(Yna)NO(an;)]
[Ng (vqa) 3o (vzg) = Jo (vpa)Ng (v r) 1} (C-9)

The asymptotic forms of Eg.(C-2) are now substituted into

Eq. (C-9) to yield
Rn(o) =

-2y
n [sin(yna- %)cos(ynp-%i) - cos(y a-n)51n(v "-——)]

TY vap n

&n n x
4b27§ T . 37, .2

———3[sin(y a-~)cos(Y b-——) - cos(y a-g)sin(y b-7—)]" - =5
2abm Y m

o=

)]

2 1 1 . m +
F?; 7= 7=f[51n(yna—z)cos(v rq-—) - cos(y a-—)51n(y rq

Tq

/__[Sln(Y a-7 )°°S(anq'2) - cos(y a-—)Sln(Yn q 4)] . (C-10)
Tq
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; The trigonometric identity

sint¢ cos6é - cos¢ sinb® = sin(¢-6) (C-11)

is employed to reduce Eg. (C-10) to the form

r -

% -4sin[y (a- o)+ ][;éE51n[y (a-r;)] - —l:sin[vn(a-rq)]?
! r J

N R, (0) = 3 <!

) n%a/p Y 0%, 25[9 sin® [y,(a~ b)-—] -1

The expression may be further reduced by noting that

sin(¢ + %) = cos¢
which yields
1l . + 1 . - )
-2cos[yn(a-p)] ;:Esln[yn(a-rq)] - ——j51n[vn(a rq)]
r r J
R_(p) = i d
n lf
avp Yooy glb cos? n(a-b)] - a}

As n becomes larger, o approaches the value -jyn, yieldina

- - S O B S ey 1]
2cos[Yn(a p)] /_:51n[Yn(a rq)] /_:SLn[Yn(a rq)]J
r r
R (p) = 4 3
-jYi ) {b cosz[Yn(a-b)] - a}

As n becomes larger, Yn approaches the value %g;. The form

-

of the expression then becomes
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: nn 1 . _.nT + 1 _._.nm -
-j2cos[z—(a-¢) ] | —==sin[—=(a-r_)] = ——sin[—(a-r_)]
} b-a /;; b-a g /;: b-a g !
R () = k! k& :
2
[nn ( 2,n7_ __ _ .l
/o =5 kb cos®[gzzlab)] - a .
L This expression may be simplified throuvgh the use of two
| trigonometric identities:
i
i cosz(-nv) =1
1 and
]
cos: siné = % sin(¢+2) - sin(¢-2)
The expression now becomes
[P - ] o 5
R (5) = -3 (p-a) 1 ‘51n(n-l) ; szn(nvz)i
> — 1
n ’Tzv,:’)- v'r+ n2 n2 )
o
1 () i I ]
1 {sxn(n43) sin(n?,)’
pman 5 - 5 [ (C-12)
Voo o n n J
g
where
m +
91 = b—_g(Za -c - rq)
il +
@2 = b—_;(rq -c)
Tr -
0y = gox(2a - o - rq)
‘n -
@4 = B—-E(rq - 0) .
This exercise has demonstrated that the asymptotic (large
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argument) form of the Bessel function expansion for H&”
consists of four series which have the general form:

sin (n&)

S(9) = ] =5t (C-13)

In order to apply the technique described in Appendix B,
another series is required which has a known sum and whose
individual elements have a form similar to those of Eg.(C-13).

In Ref.[2¢6], expression 604 is given as

o
sin(nt sin¢ L .
) (n®) . - sinC 1n{2sin

i 0 < T < 2=, (C-14)

1

bR
n=2 n°-1 2
The procedure of Appendix B may now be employed to obtain a

modified form of Eg.(C-12) which converges more rapidly.

The resulting series expansion for HgM is
+ -
- 2 -2 & (o)
Mk ? : E cosa (t-z) “n(fg) ¢n(rq) as ( ):
¢  n _L. g . Jsina_(t-s) 2 da.
a=1 n=1 n QnMn j
, ilb=a) 1 sin(n9,) - sin(nt,) : sin(néy) - SLn(nc4)]
ﬂ2/3 nz-l v_+ V_=- J
r r
q q _
j (b=a) _1 1 ° 1 %2, )
- 1—7——— —_ (sinol(z-ln{ZSinf—}) - sin®,(7-1n{2sinz=})
°/o /r+ J
q
1 (.. 1 _C3, o1 9
———-[51n93(z-1n{251n7—}) - 51n®4(z-1n{251n7—}) . (C-15)
/;:
q
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Because the series of Eg. (C-14) begins with n = 2, the asymp~
totic terms are not evaluated for n = 1. Care must be taken
that the arguments of the sine functions in Eg. (C-15) be in
the range specified by Eg.(C-14). 1If the argument falls ocut-
side the range, the argument can be brought into the proper
range by adding or subtracting multiples of 2~ or bv emrloy-
ing appropriate trigonometric relationships.

The sine and cosine functions in Eq. (C-5) are not in-
cluded in the derivation of the asymptotic form for two rea-
sons: the first is that these terms are not always present
and the second is that when the terms are present, they are
easily treated because of the behavior of hyperbolic func-
tions. The behavior of the gquotient cosan(t-z)/jsinan(t—s)
as n increases is primarily dependent on the value of z.
Since a approaches -an for large n, the trigonometric
functions become hyperbolic functions with the following

behavior:

For z = s:

lim cosan(t-s) lim coshyn(t-s)

n->-© . - n-+o .. - ] (C-16)
51nan(t-s) -351nhyn(t-s)

For z = ¢g: s < g < ¢

- cos Y_{t~-z)
— iif: Z — 0 (C-17)
-jsinhyn(t-s)

lim

N+

cosun(t-;)

sxnan(t-s)
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An inspection of Eg.(C-5) will verify that the asymptotic
form of Eq. (C-16) normally occurs in conjunction with a %
factor. Since the product of j and % is unity, the limit
of the quotient cosan(t-s)/jsinan(t-s) as n increases with-
out bound is unity and, therefore, it does not enter into
the asymptotic form for Hgm. An even more advantageous re-
sult is obtained when the quotient is of the form given by
Eg. (C-17). These factors approach zero so rapidly with in-

creasing n that it is unnecessary to employ the procedure

of Appendix to obtain rapid convergence.

C. Asymptotic Form for Ep in Coaxial Waveguide

An expression for the higher-order mode expansion of E_

in the same coaxial region for which Eq. (C-4) is defined is

given by
® sina_(t-2) b
g™ = 3 n . [ g2 o ¥ ap] n (c-18)
P n=l |sina_(t-s) M_ ‘h LT 3o

The only difference between Eq. (C-5) and Eq. (C-18) which
would affect the asymptotic form of the latter is the lack

P of the l/an term found in the former. The use of this fact
3 allows the derivation of the asymptotic form Sn(p) equiva-
lent to Rn(p) for HTM by multiplying Eq. (C-12) by the asymp-

totic form of a,:




it S S

The resulting expression for Sn(o) is given by

{ . ~ . - N
s (o) = -1 1 sxn(nvl) 51n(n02)
n "/5 /;I n n

{ . N
51n(n®3) 51n(n®4)

1
/—_ L n n
r
q

. (C-19)

The definitions of the On are the same as those given for
Eg. (C-12). The convergence improving procedure of Appendix
B can now be applied by employing expression number 508 of
Ref.[26]:

sin (no)

o k(m-9) , 0 <@ < 27 . (C=20)
1

e 8

D. Asymptotic Form for Ez in Coaxial Waveguide

The z-directed component of electric field has no TEM
component and is defined entirely by its higher-order mode
expansion. An expression for Ez which is valid in the same

coaxial region as that for Egs.{C-4) and (C-18) is given by

= | cosa_(t-z) v2 fbo a6
3
n

n E.p ndo| ¢ _ . (C=-21)

h° 35 n

m
]

n=1 jSann(t-S) anM

The process for obtaining the asymptotic form is begun by
substituting the large argument forms of the Bessel functions

into Eq. (C-21) and results in the expression:
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2
T (o) = ) ;n[No(Yna)Jo(Yno) - JO(Yna)NO(YnO)]
% " by 2 _ 2
} a n [NO(Yna)Jl(ynb) - Jo(yna)No(an)] - ;7

n{ —s———m—

+ +
{[Ng(vpa) Jgtyr) = Ty )N (v ro)]

[NO(Yna)JO(anq) - Jo(Yna)No(anq)]} . (C-22)
: After the steps outlined in Egs.(C-7) through (C-12) are
followed, an asymptotic expression for Tn(p) is obtained:
\ - cos(n@,) cos(nd,)] ‘
T () = 4— L IR 2
T Vo V_+ n n
i Tq
\
1 [cos(n®3) ) cos (n@, co23)
S n n :
r
d
The Gn are the same as those defined for Eg.(C-12). The
convergence improving procedure of Appendix B may be ap-
plied with the use of expression number 503 of Ref.[26]:
cosind) . _j1n{2sing} , 0 < © < 27 . (C-24)
n=1 n

E. Asymptotic Form for H¢ in Circular Waveguide
The field in a circular waveguide consists only of
higher-order modes. The field expansion is different from

that of a coaxial region and, consequently, the asymptotic
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forms for the individual field components are different. 1In
Chapter VI, it is shown that the transverse component of mag-
netic field is proportional to the following expression:

b
2cosa_(t=-z) o) R
n2 Ep 0 Jl(knc) Jl(AnO) .

=1 4ed - 2
n=1 jslnan(t s) b an Jl(Anb)

H =

c kK <
$ n 2

a
(C~25)

After Eg is expanded in a set of weighted pulses defined by
Eg.(31l), the integral is evaluated and a function Qn(p) is

extracted:

-ZJI(Ano)
2 2
an an Jl(knb)

+ -
Qn(o) = [Jo(knrq) - Jo(\nrq)] . (C-26)

Substitution of the asymptotic forms for the Bessel functions

into Eq. (C-26) yields

——

2 3n 2
-2 cos(kno-z—) ;y;

A
Q_ (o) = 0 1 cos(?\nr;- )
2 2 2 3m, v/ +
A b an/E FT;B cos” (X b=-7-) Tq

- /—f_— cos(A ri- )| . (C-27)

= nq
q
 § The trigonometric identity
: cosd cosd = X[cos(¢p+98) + cos(¢~-8)] . (C~28)
]
; is now employed to yield
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=1

1 , +
Q. (p) = {cos[r_(p+r_)=m]
n 2 _3m n q
anxnb Yp cOs (Anb T—)

Qo+

+
+ cos[A,(p-rg) =3 } -

)|
Q |

Three additional identies:

- - 7
{cos[kn(o+rq)-ﬂl + cos[An(p—rq)-E b

cos(p=m) = =coso , (C=-29a)
cosw--;l) = sin¢ |, (C-29b)
and
cosz¢ = %[cos2¢ + 1] , (C-29c)
are used to obtain
Q (p) = =2 L {—c05[)~n(p+r+)]
a A_b /o [=-sin(2)\_b) + 1] |/_+ q
nn n rq
. + 1 - : Y - -
+ 51n[ln(o-rq)]} - e {-cos[xn(o+rq)] + Sln[An(D rq)]}
Tq
For increasing n:
a —==3A (C-30a)
and
(n=%)m -
)‘n — (C=-30Db)

The asymptotic form of Q (p) is now given by
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-2
Q. (p) = x
n 2_2
-jb iﬂ:i%_l_ /o [-sin[giﬂgﬁlzb] + 1] ]
b

L reiprfn=d)To 40 (n=%)m +
/;: {sin] 5 (o rq)] cos[-% (o+rq)]}
q
R .r{n=¥%)m - - (n=3)m -
/r__ {Sln[-——b (p rq)] cos[~—F—— (o+rq)]}l .
q J
Note that: sin[(2n-%)7] = -1

The asymptotic expression for Q_( ) may be presented more
n

compactly by

Qn(o) = 'ibz /ii {sin(n-%)(bl - cos(n-%)¢2}
(n=%) “1< Vo g
’ - L {sin(n-%)®; - cos(n-w)e,}| , (c-31)
5
) q
!
4
'* where
‘ T, +
' @1 = B(Q rq) [;
: _om +
A" @2 = S(Q+rq) ’
1 m -
and /

T -
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The use of the trigonometric identies:

sin(9-6) sin¢ cosf - cos¢ sind (C-32)

and

cos(¢-8) = cos¢ cos8 + sin¢ sind , (c-33)

results in the expression

Q_ (o) = -ib L {cos®l sin(ne,) - sin®l cos(ne,)
| n 22, |/ F T ! T 1
(n=%)“1/o ("r
b q
| ¢ - 1 o, .
‘ - cos_2 cos(n?,) - sin 2 sin(n®,)} - ——= {cos_3 sin(n¢,)
- 4 I3 ~ i
q
. $ ¢ . ¢ .
- sin 3 cos(n¢,) - cos 4 cos(nd,) - sin 4 sin(nd,)}| . (C=34)
- 3 -— 4 _— 4
4 4 4
The procedure of Appendix B may now be applied by employing

Eg. (C-14) for the sine series and one of the following ex-

pressions from Ref.[26]: (The second expression is #605.)

o 2 2
; cos(gm - 1;_‘2 + Z_ , 0< 0 < 2n (C-35)
n=1 n
4 Cog("el = % + ¥cos¢ - Y(m-¢)sin , 0 < ¢ < 2m  (C-36) -
; n=2 n°-1

If the series with nz—l in the denominator are used, the

n = 1 terms are neglected.




faies s o

: F. Asymptotic Form for Eo in Circular Waveguide

E The asymptotic form for E can be obtained from that
}

for H¢ by multiplying the latter by a,. For very large n,

: oy approaches -j(n-%)n/b, and the subsequent multiplication

of Eq.(C-34) by this factor yields the expression

Vale) = —= L cosil sin(n¢;) - sinil cos(n%,)
(n-%)ﬂ/E + 4 4
r
q
- ¢ \ NI ] 1 Ea i (s
: - cos 2 coes{n’i,) - sin*2 sin(né¢,)} = — {cos”3 sin(n:,)
< T < ' 2 /r—_ T 3
q

)
- sin¢3 cos(n®3) - cos¢4 cos(ni,) = sin 4 sin(né,)}j .
T T : T v

/

>

(C=37)

-

The convergence improving procedure of Appendix B may be

applied through the use of the series in Egs. (C-20) and

(C-24).
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APPENDIX D

PROPERTIES OF SOLUTIONS TO BESSEL'S EQUATION

1. Introduction

In the present analysis, frequent use of various Bessel

functions (solutions to Bessel's eguation) is made and, thus,

for convenience, pertinent properties are developed and sum-

marized here.

2. Orthogonality

Bessel's equation is

2
n =
- —7}fn(kx) =0
X

2

{x

2P

Xl
m‘a.
-

s Ox)} o+ [x

where fn is any solution. Consider two solutions Bn(kqx) and

Zm(pr) of

1d .d 2 _n?

z 3§{x = Bn(qu)} + [Aq - -z By(Agx) =0 (D-1a) .
and

1d . .d 2 _ m?

2 a;{x = Zm(ypx)} + (yp - ;7]zm(ypx) =0 (D-1b)

Multiply Eq. (D~la) by x Zm(ypx) and Eq.(D-1lb) by x Bn(Aqx)

to obtain
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2

Zm(pr) g—x[x %; Bn(qu)1 + (Aé - %)x zm(vpx) Bn(kqx) = 0
(D-2a)
and
a (.4 2 _m?
Bn(kqx) a;(x % Zm(YPX)] + (Yp - ;f)x zm(pr) Bn(qu) =0
{(D-2b)

Subtract Eg. (D-2b) from Eg. (D-2a) and integrate over (a,b):

b
d d d d
I [Zm ax*a B "B Em: zm)] dx

X=

2

b
- 2_,2 1 2 2 -
= J [(Yp Aq) + , (n®=m )]x zm Bn dx (D-3)

X=

The left side of Eq.(D-3), after one integration by parts,

reduces to

b
d d d d

I [zm &*ax By T By & Zm)] dx
x=

[e 1

a b
[x Zm == B_- X B ax Z“J

d d

- ° (g— B )(Q_ Z2_) - x(3= 2 ){(z3= B )j 4
X3 “n’ '3@&x °m X dx “m’ 'dx Tn ] x




SO0 that one may write

b b
2 .2 X 2 2 1
(yp Aq) { X zm Bn dx + (n"=-m7) [ 2 Zm Bn dx

=a x=a
b

= d - 4 -

= [x Zm = Bn Bn Ix Zm } (D~4)
x=a

Eg. (D-4) serves as the basis for determination of various
useful properties of solutions to Bessel's equation. These
properties are developed in turn below. When m=n, Eg.(D-4)

reduces to

w22 (e z (v B O x) dx
g’ n' p n'g
x=a
a a b
= X[Zn(pr) a= Bn(Aqx) - Bn(kqx) = Zn(pr)] (D=5)
x=a
Observe that:
b
f X Zn(pr) Bn(kqx) dx = 0 (D-6)
x=a
. 2 2 . , .
if Yp # Aq and if the following is true:
d ]b
{x[zn(ypx) Ix Bn(kqx) - Bn(Aqx) Zn(ypx)] =0 (D=-7)
.Jx=a
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Zn and Bn can be the same solution to Bessel's eguation or

different solutions; e.g., Jn’ Nn' or combinations of these.

If the term within the braces of Eq.(D-7) is zero at both a
and b, or one is zero at a and the other at b, the condition
is satisfied.

Another condition which leads to similar results is

d = -
xaz +2_ =20 (D-8a)

d = -
XEB + B =0 (D-8b)

at x=a and at x=b as can be seen from the following simplifi-

cation of the left-hand side of Eg.(D-7) subject to Eg.(D-8):
[[Zn(Ypb)[-Bn(kqb)] - Bn(kqb)[zn(Ypb)]]

- i, - ]1= -
LG(Ypa)[ Bn(Aqa)] Bn(Aqa)[Zn(Ypa)] | 0 (D-9)

It is worth noting that Eq.(D-9) follows from Eq.(D-8) also
in the special case that zn = Bn {the eigenvalues are main-
tained distinct).

If Egq.(D-la) is replaced by the zero eigenvalue equation

below:

B>
|Qa

1
X

[o 1

2
n
X Rn(X)} - ;—2- Rn(X) = 0

x

and the preceding procedure is repeated, one arrives at

188




2 (b
Yo f x zn(pr) R, (x) dx
X=a
d d b (D~10)
= [X[Zn(pr) ax Ryx) - R (x) 3% Zn(pr)J]xza

which shows that the solution Rn(x) for the zero eigenvalue

exhibits the same property as those associated with non-zero

eigenvalues.

3. Normalization

It Bessel's eguation is multiplied by 2x2 g; fn(xx),
one obtains
d d d 2.2 2.4 _
2x ax fn a;(x ax fn) + 2(A°x"~n )§§ fn fn =0
or
d a 2 2 4 2 2 2.4 - -
a—x-[[Xa;fn]]-n a;[[fn]]+)\[2x ax fn fn] 0 (D-11)
By direct differentiation, one obtains
d 2.2, _ 2 d 2
a;[x fn] = 2x fn ax fn + 2x fn
or
2 4 _d 2.2, _ 2
2x fn ax fn = dx[x fn] 2x fn
which enables one to reduce Eq.(D-1ll) to
2, .2 _4d d 2 24 ,.2.2, _ 2d ;2 _
21°x fn = _i{[x = fn] ] + X dx[x fn] n dx[fn] {(D-12)
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Integration of both sides of Eg.(d-12) yields the following

result:
b b
2 -1 d 2 2,2.2 2.2, 1]
f X fn(Xx) dx = ;;5[(x = fn(kx)} 4+ A% fn(Xx) -n fn(ux)ﬁ
=a
(D=13)

Another form which is useful in applications follows from use

of the identity (valid for any solution to Bessel's equation):

d _ -
X 3x fn(kx) = n fn(kx) Ax fn+1(Ax)
in Eq.(D-13).

%% €20 ax = Ei[fz(x ) - £ 00 £ o]
n X 2 (rp'h¥ n+l n-1'"¥ - (D=14a)
x=a X=a

for n#0. When n=0, %; £,(0%) = =X £, (Ax) and Eq.(D-13) is

reduced to

(D-14b)

o

b b
f % fg(xx) dx = zfg(Ax)]

X=a

[xzfi(kx) + x
X=a

4. Orthogonality of ¢p
The function ¢p' commonly found in problems dealing

with coaxial geometries, is defined by

= - A A -
0 (x) = Ng(Aa) Jo0x) = Jg(h.a) Ng(apx) (D-15)
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where a and b are the inner and outer radii, respectively, of

the coaxial structure and the eigenvalues Ap are the roots of

Jo(lpa) NO(XPb) - No(Apa) Jo(Apb) =0 (D-16)

Since p(x) is a solution to Bessel's equation, one can
write from Eq. (D-6)
b
(k;-Aé) J x ¢_(x) ¢q(x) dx

P
x=a

b
d - a
QP(X) ¢ (%) ¢q(x) ¢ (X)]]x=a

= [x dx 'q dx 'p

(D-17)

Notice that the right-hand side of Eg.(D-17) is zero at the

upper limit because ¢p(b) and ¢q(b) are zero due to the con-

ditions that Ap and Aq are the appropriate associated roots.

At the lower limit, each ¢P and ¢q is identically zero re-

gardless of the values of the roots. Hence, clearly ¢p and

¢q are orthogonal.

5. Norm of ¢ R
1%

From Eq. (D-14b) we see that for (order) n=0:

be ¢2(x) dx =
P
x=a
1f,2 2, .2,2,.,1°
f[x [NO(Apa) Jl(xpx) Jo(xPa) Nl(Apx) + x ¢p(x)]x=a
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which, because of the boundary conditions on ¢p(x) at x = a

and x = b, reduces to

be ¢2(x) dx = L[xz{N (Aa)J, (A _x) = J,(A_a)N, (A x)]z.|b
) 2 0 'p®' 1 p 0P 1P lx=a
X=a
or
bxoz(x) dx = 3{b2|{N. (A _a)J, (A_b) - J, (A a)N, (A b)|?
P 7 0'p? 1 %p 0'p?’' 1 %p
X=a

2 2
- a [No(lpa)Jl(Apa) - Jo(Kpa)Nl(Apa)] ].

Since the coefficient of a2 above is in the form of a

Wronskian squared, one has

P 0% (x) dx = b N (A_a)d, (A_b) = J(A_a)N, (A b)}z -

j P 2 0''p 1''p 0''p 1'p Tr2)\2 ¢
X=a P

(D-18)
Another form is
b b

2, 2 - L1Jf,a ]z] -

Np I b'q ¢p(x) dx 3 kz[(x = @p(x) xza. (D=19)
x=a P

. d
6. Orthogonality of = ®p(x)

. d .
The eigenfunction = op(x) is

lﬂa

@F(x) = -kp[No(kpa)Jl(lpx) - JO(APa)Nl(APx)] (D=20)

Q)

b 4
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where the Ap are the roots of Eg.(D-17). Notice that the

boundary conditions on %; Qp(x) are given by :

g; [xop] = 0 at x=a,b (D=21) |

and

14 d¢ 2 1
% ax [x de] + [kp - §J¢p =0 , (D=-22)

from which it may be concluded that

4 .4 o
x[a;{a; ¢p(x)}] + 3= ¢p(x) =0 at x = a,b . (D-23)

Hence, the procedure ileading to Eg. (D=9) ensures the

. d
orthogonality of ax ¢p(x).

If one considers the zero eigenvalue equation and the
corresponding eigenfunction, %, the orthogonality of % and
g; ¢p(x), subject to the weight function x, can be demon-

strated by writing

® x|= (9= o (x)| dx = ¢_(b) = ¢_(a)
x)dx *p P P (D=24)
x=a
which reduces to, in view of the boundary conditions, )

b 2 b
d 2 = X°[d 2
X=a ’

2 -
, . - 12[x - 2

. (D=25)

4 X=a
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1
7. Norm of v

The eigenfunction corresponding to the zero eigenvalue

has the following norm, with respect to the weight function |

X,
b 2
1 b

( I b 4 {;‘-] dx = ln-; . (D=26)

‘ X=3
i 8. Summary ,
L _ For convenience, the orthogonality properties and norms

i

developed in this Appendix are summarized below.

Orthogonality
b
J X @F(x) Qq(x) dx = 0 , p#4g (D=27)
x=a
b g a
J b4 [Ef Qp(X)]{EE ¢q(x)] dx = 0 , p#q (D=28)
x=a .
® e (& (x)][li dx = 0 A2 %0 (D~29)
dx 'p X ! P
Y X=a
Norms N

i b 2 2
3 N2 = f x o;(x) dx = 2 (9— 0 (x)] -2

P 2 \dx p 2
x=a ZAp T Ap
- 2y (A_a)J, (A_b) = J.(A_a)N, (A b)]z -2 (D=30)
2 l 0 "p™ " "1'p 0 "'p™' " 1Y'p 3.
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= - 2 _ 2 _
> P (NO(Apa)Jl(Apb) Jo(kpa)Nl(Apb)] F (D=-31)

b 2
,{ f x [’l‘} dx = 1n§ (D=32)




APPENDIX E

DETAILS OF COAXIAL CAVITY CONSTRUCTION

1. Introduction

Two sets of coaxial cavity structures were fabricated in
order to perform the experimental investigations described in
Chapters VII and VIII. The two sets of cavities are function-
ally quite similar but differ greatly in construction detail
and materials. The primary reason for this difference is that
one set is almost twice the diameter of the other and the
smaller set was constructed from the largest, cylindrical,
brass pipe available. Each set consists of two cavity (wave-
guide) sections having identical cross sections, but differ-
ent lengths, plus interchangeable end plates which give the
cavities one- or two-port characteristics. In addition, each
set includes two very thin partitions with centered, circular
apertures (of different sizes) which are used to divide the
cavities into multiple sections. All cavity components are
made of brass in order to achieve boundary conditions of high
electrical conductivity. Following are short physical de-~
scriptions of each set of cavities and appropriate construc-

tion details.
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2. Smaller Coaxial Cavity

; The geometry and dimensions of the smaller of the two

| sets of coaxial cavities are given in Figure E-1 and Table
E-1. The cavity sections were cut from a section of approxi-
mately eight inch inner diameter, red brass pipe and were
bored on a lathe to their final inner diameters after the 1/4

inch thick flanges were soldered on each end. As indicated

in Table E-1, the shorter cavity section required a slightly
larger bore to achieve a circular cross section which left it
0.04 cm larger in inner diameter than the other section. 1In
order to position the inner conductor as near to perfect cen-
ter as possible, the end plates and cavity sections were

aligned by inserting steel pins through precisely positioned

holes drilled in flanges and the end plates. After in-

sertion of the pins, nuts and bolts were used to securely
fasten the adjacent parts together. Use of the available
pieces allowed four different cavity configurations to be

realized:

1. One-section, one-port cavity

2. One-section, two-port cavity

3. Two-section, one-port cavity

4. Two-section, two-port cavity

l : It should be noted that configurations 3 and 4 have the op-

tions of no partition between the sections or a partition with
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TABLE E-1. DIMENSIONS OF COMPONENTS OF SMALLER SET OF CAVITIES

Cavity 2 £ v
Component {cm] (em] [em]

n avi
cong, Savity  15.095 30.48 21.232
ShoTTocavity  §.637 30.48 21.273
Front End
Plate 29.84
Rear End
Plate 29.84
Partition with 19.80
Large Aperture .
Partition with 29.80

Small Aperture
One=Port Rod
Two~-Port Rod

Rod Used with
Partition

TABLE E-2. COMPARISONS OF ADMITTANCES OF TRANSMISSION LINES
WITH DIFFERENT RODS FOR COAXIAL CENTER CONDUCTOR

Transmission
Line Section

GenRad 50-Ohm Feed Line
GenRad Canter Rod
Nominal k-inch Rod
k=-inch Red - 0.005"
h-inch Rod + 0.00S5"

Long Cavity Section
GenRad Cantsr Rod
Nominal %-inch Rod
k-inch Rod -~ 0.005"
k-inch Rod + 0.005"

Short Cavity Section
GenRad Center Rod
Nominal %-inch Rod
k-inch Rod - 0.005"
k~-inch Rod + 0.005"

OD of Inner ID of Outer
Conductor

[cm]

0.6205
0.6350
0.6223
0.6477

0.6205
0.6350
0.6223
0.6477

0.6205
0.6350
0.6223
0.6477
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(em]  [em] ([em] [em]
0.635
0.635
11.684 0.318

13.472 0.318 !

8.006 0.051

2.540 0.051
26.799
40.300
48.939

Conductor Admittance

(cm] [mhos]
l1.428 0.020000
l.428 0.020565 -
1.428 0.020065
l.428 0.021080
21.232 0.004718
21.232 0.004749
2l.232 0.004722
21.232 2.004770
21.273 0.004715
21.273 0.004746
21.273 0.004719

21.273 0.004773




one of two aperture sizes. Thus, there are eight possible
cavity variations available from the four basic configurations.

The coaxial outer conductors which were scoldered to the
end plates to form feed lines to the cavity are GenRad Type
874, 50-ohm, air line sections. The companion, 50-cohm inner
conductors were used for cavity configurations 1 and 2. These
rods have a diameter of 0.6205 cm (0.2443 inches). The inner
conductors of the two-section cavities were constructed of
circular, brass rod with a diameter of 0.635 *£0.013 cm (0.250
£0.005 inches). The possible variations in the characteris-
tic impedances of the feed lines and the cavity sections is
presented in Table E-2. This change in inner conductor diam-
eter is included in the appropriate calculations. The only
impact would be in matching the 50-ohm load for the two-port
cavity configuration. Comparisons of measured and calculated
results for these cases show no effects.

In order to allow the insertion and movement of probes
designed to sample the field inside the cavity, radial slots,
0.3175 em (1/8 inch) wide, were cut in each of the end plates.
These slots were designed to be parallel to the direction of
current flow on the end plates and, thus, provide minimum dis-
turbance to the field within the cavity. The orientation of
the slots also served to inhibit the excitation of any higher-
order modes which might be associated with ¢-directed cur-

rents.
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? The use of the brass pipe, the 1/4 inch brass flanges,
and the 1/8 inch brass end plates made these cavity configu-
rations very durable and heavy. It was possible to tighten

E the flange bolts very firmly in order to enhance electrical

conductivity at the interfaces. The excellent agreement be-

tween measured and calculated field and admittance values for
the smaller cavities demonstrates that the cavities contain

no electrical abnormalities. Photographs of cavity compo-

nents are presented in Figure E-2.

3. Larger Coaxial Cavity

? The geometry and dimensions of the larger set of coaxial
cavities are given in Figure E-3 and Table E~3. The cavity
sections were formed from 0.005 cm (0.020 inch) thick brass
sheets which were rolled into circular cylinders and soldered
to 1/8 inch thick brass flanges which serve to hold the cylin-
ders in shape. The axial seams where the sheet brass ends
join were filled with solder and sanded smooth. Because both
cavity sections were constructed simultaneously, the inner
diameter (average of four measurements) of one section agrees
to within 0.1 cm of the other. The cavity sections and end

plates are joined by the use of alignment pins and bolts pas-

ging through holes in the flanges as was done for the smaller
set of cavities. The inner conductor was constructed from a

3.195 cm (1.258 inch) diameter brass pipe. The outer conduc-
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tor of the feed-line section was constructed from a 10.424 cm
(4.104 inch) inner diameter, brass pipe.

The feed point on the feed line was a GenRad 50-ohm con-~
nector mounted on the sedi of the outer conductor with the
center pin of the connector extending down to the inner con-
ductor of the feed line. The end of the feed line not at-
tached to the cavity was blocked off with a moveable aluminum
plug which served as a shorting plate. Because of the diffi-
culty of fabricating a matched locad for the non-standard coax-
ial line, only one-port versions of the large cavities were
constructed. This resulted in two possible cavity configura-

tions:
1. One-section, one-port cavity

2. Two-section, one-port cavity

Two partitions with different aperture sizes were constructed
for use with the two-section cavity. The relevant dimensions
of the larger cavity set are given in Table E-3 and admittan-
ces of different waveguide segments are given in Table E-4.
Slots for field probe insertion were cut into the cavity
end plates as was done for the smaller cavity set. In addi-
tion, an axial slot was cut in the inner conductor to allow
sampling of the interior field along the axial coordinate.
This slot extended well into the feed-line section and would
serve quite well for a slotted line for admittance measure-

ments. The extremely large standing wave ratios caused by
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TABLE E-3. DIMENSIONS OF COMPONENTS OF LARGER SET OF CAVITIES
Cavity 2 4 v § q T o
Component [em] [cm] [em] (em] ([em] ([em] (em]
Long Cavity
Section 27.318 41.28 35.631 0.159
Short Cavity
Section 18.459 41.28 35.551 0.159
End Plate with
Inner Conductor 41.28 177.01 0.159
; End Plate with
Outer Conductor 41.28 105.41 0.159
Partition with
Large Aperture 41.00 14.813 0.051
Partition with
Small Aperture 41.00 5.121 0.051
Truncated
Coaxial Center 174.31
Conductor
3 TABLE E-4. ADMITTANCE OF EACH SECTION OF LARGER
] SET OF CAVITIES
OD of Inner 1ID of OQuter
Transmission Conductor Conductor Admittance
Line Section (em] [em] [{mhos]
Feed Line Section 3.195 10.424 0.014094
Long Cavity Section 3.195 35.631 0.006911
- Short Cavity Section 3.195 35.551 0.006917
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the one-port cavity configuration made such measurements im-
practical.

There was some difficulty in obtaining extremely tight
interfaces between the equally-spaced bolts which hold the
flanges together. During the measurements, C-clamps were
used to tighten these joints although tests made at several
frequencies did not show any significant effect due to adding
the clamps. The agreement between measured and calculated
results on the end plates of the larger cavities, while
generally good to very good, did not attain the almost com-
plete consistency of the end-plate measurements for the
smaller cavity set. The greater difficulty in obtaining very
tight flange junctions is one likely cause for such disagree-
ments. The very good agreement between measured and calcu-
lated data at the surface of the coaxial inner conductor of
the large cavity contributes strong support to the idea that
the impedance mismatch of the one-port cavities makes it
extremely difficult to couple sufficient energy into the

cavity to perform accurate measurements.
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APPENDIX F

DESCRIPTIONS OF ELECTRIC AND MAGNETIC FIELD PROBES

1. Introduction

Two types of probes were fabricated in order tc sample
the interior field of the coaxial cavities. The electric
field or "charge" probe consists of a short, thin electrical
conductor (in this case, the inner conductor of a short piece
of 0.035 inch semi-rigid coaxial cable) which is oriented nor-
mal to the perfectly-conducting wall of the cavity. The nor-
mal component of the electric field induces a small current
on the conductor which, in turn, creates a potential differ-
ence between the conductor and the cavity wall which is de-
tectable by a network analyzer operating in a vector voitmeter
mode. The magnetic field or "current” probe is composed of a
semi~circular loop of 0.035 inch coax with the outer conductor
grounded to the probe transport at both ends. A short section
of the outer conductor is cut away at the center of the loop
to expose a short piece of the inner conductor. The component
of magnetic field tangential to the cavity wall induces a cur-
rent on the loop and, in turn, creates a potential difference
between the outer and inner conductors of the coaxial loop.

This potential difference is again detected by a network ana-
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lyzer. The basic probe designs have been in use by Professor
R. W. P. King and others for many years. The rest of this ap-
pendix describes the particular probe transport designs used

for the end plates and the center conductor of the cavities.

2. End-Plate Probes

Front and side views of the electric and magnetic field
probes used to sample the cavity field at the inner surface of
the cavity end plates are presented in Figure F-l1. The probes
are mounted on brass transports which have a T-shaped cross
section for insertion into and sliding back and forth in a 1/8
inch (0.3175 cm) wide slot. The bottoms of the probe trans-
ports are designed to be flush with the inside surface of the
end plates. Good electrical contact between the probe trans-
port and the cavity end plate is very important in order to
obtain a valid reading from the network analyzer. It is also
important that the probe transport slide easily in the slot to
facilitate making measurements. These two contradicting re-
quirements add an element of art to the science of probe manu-
facture and use. Adequate pressure on the top of the probe
transport during measurements can ensure a good electrical
contact with the cavity end plate. It is important that the
bottom of the probe transport be flush with the inner surface
of the end plate in order that the probe see no sharp corners

or other discontinuities in its neighborhood.
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Since the end plates on the small cavities are 1/8 inch

thick and those of the large cavities are 1/16 inch thick, a
small, flat, 1/16 inch thick clip is used to adjust the depth
of the probe transport to the thickness of the thinner end
plates. A photograph of the two probes (with a gquarter for

size comparison) is shown in Figure F-2.

3. Center Conductor Probes

Drawings of the electric and magnetic field probes used
to sample the cavity field at the outer surface of the coaxial
inner conductor are presented in Figure F-3. The probes are
mounted on 1/8 inch-thick, brass guides which are in turn
mounted on thin, brass plates. The plates have been contoured
to fit the outside of a brass, cylindrical probe transport and
make a snug fit with the inner surface of the brass pipe which
forms the coaxial center conductor. The thin plates are se-~
cured to the sides of the cylindrical probe transports by min-
iature screws. The coaxial lead from each probe passes into a
hole in the side of the cylinder and emerges from the hole at
one of the flat ends. The probe transport slides easily in-
side the brass pipe because of thick, Teflon disks which are
fastened to each end of the brass cylinder. The disks are
slightly larger than the cylinders and make the sliding con-
tact with the inner walls of the pipe. The thin brass plates

make the primary electrical contact with the brass pipe. The
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tops of the brass guides are designed to be flush with the
outer surface of the brass pipe.

The probe transports are positioned by moving a long,
thin, brass tube whose end has been threaded to receive a
bolt which passes through the center of the brass cylinder.
The flexible probe lead enters a hole in the side of the thin
! tube (just behind the threaded section), passes through the

inside of the tube, and exits at the far end of the tube. A
marker was placed near the far end of the tube for use in re-
cording the position of the probe inside the cavity. Two
photographs of the magnetic and electric field probes are

presented in Figure F-2.
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